

Breakthrough:

New Solutions to the problem of:

Instantaneous "Resonant Load" Parameters Estimation Operating in "Non-Stationary" Conditions

Real World > Real Operating Conditions

Two broad categories:

- Stationarity, Deterministic, Periodic....
- Non-Stationarity, Time-Evolving (T-E), Transient......

Extensive field tests conducted by known professionals active in the field of ultrasound conclude that:

many of new ultrasonic applications are highly non-stationary!

There is a need for "Easily Implementable Signal Processing Tools" capable to accurately estimate "Load Parameters" in "Real-Time"

The proposed solution is based on:

Trigonometric properties of band-limited signals represented in their analytical forms

It can be shown that "Short-Time" Estimations are easily obtainable for the following "Time-Evolving Parameters":

Magnitude of "Short-Time" Load Impedance

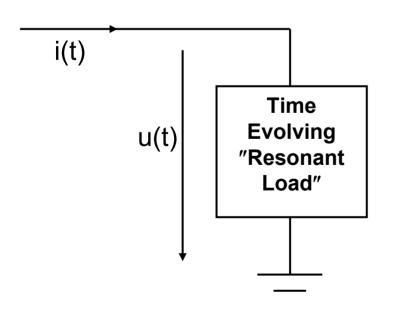
Argument of "Short-Time" Load Impedance

"Short-Time" Active/Reactive Power of "Short-Time" Load Impedance"

Instantaneous Frequency of "Time-Evolving"
Load Voltage or Load Current"

Basic theoretical analysis

Basic structure bloc diagram



$$i(t) = \hat{I}(t) \cos(2 \cdot \pi \cdot f_0(t) \cdot t + \phi_i(t))$$

$$u(t) = \hat{U}(t) \cos(2 \cdot \pi \cdot f_0(t) \cdot t + \phi_u(t))$$

Î(t): Instantaneous current envelope

φ_i(t): Instantaneous current phase

Û(t): Instantaneous voltage envelope

φu(t): Instantaneous voltage phase

f_o(t): Instantaneous driving signal frequency

Then, i(t) and u(t) can be represented in their respective analytical forms:

$$i(t) \rightarrow i_{analytic}(t) = i(t) + j \cdot \tilde{i}(t)$$

$$u(t) \rightarrow u(t) = u(t) + j \cdot \tilde{u}(t)$$

With:

$$\tilde{i}(t) = \hat{I}(t) \cdot \sin(2 \cdot \pi \cdot f_0(t) \cdot t + \phi_i(t))$$

$$\tilde{\mathbf{u}}(t) = \hat{\mathbf{U}}(t) \cdot \sin(2 \cdot \pi \cdot f_0(t) \cdot t + \phi_u(t))$$

 $u(t) \rightarrow Hilbert Transformation \rightarrow \tilde{u}(t)$

 $i(t) \rightarrow Hilbert Transformation \rightarrow \tilde{i}(t)$

$$H\{x(t)\} = x_{HT}(t) \quad ; \quad x_{HT}(t) = \frac{1}{\pi} \cdot \int_{-\infty}^{\infty} \frac{x(\tau)}{\tau - t} d\tau$$

 $H\{x(t)\}$ properties: Mod[H] = 1, $Arg[H] = -\pi/2$

→ The Hilbert Transformer is a **90 degrees** phase-shifter!

From trigonometric properties, the following relationships can be derived:

$$\hat{I}(t) = \sqrt{i(t)^2 + i(t)^2}$$

Instantaneous current envelope

$$fo(t) = \frac{1}{2 \cdot \pi} \cdot \frac{i(t) \cdot \frac{d}{dt} \tilde{i}(t) - \tilde{i}(t) \cdot \frac{d}{dt} i(t)}{\hat{I}(t)^2}$$

Instantaneous current frequency

$$M_{stZ}(t) = \frac{\sqrt{u(t)^2 + \tilde{u}(t)^2}}{\sqrt{i(t)^2 + \tilde{i}(t)^2}}$$

Short - Time Magnitude of the Load Impedance

$$\sin\left(\phi_{\mathbf{u}}(t) - \phi_{\mathbf{i}}(t)\right) = \frac{i(t) \cdot \mathbf{u}(t) - i(t) \cdot \mathbf{u}(t)}{\sqrt{i(t)^2 + i(t)^2} \cdot \sqrt{\mathbf{u}(t)^2 + \mathbf{u}(t)^2}}$$

Short - Time
Argument Sinus
of the Load
Impedance

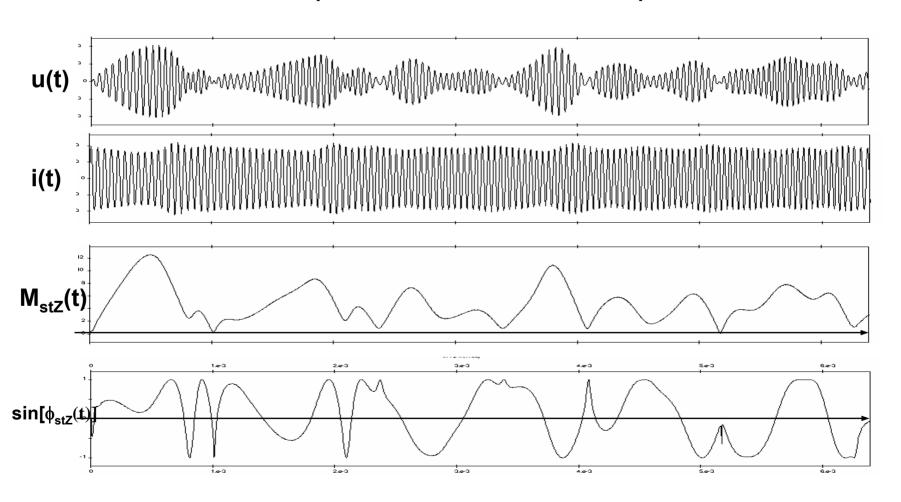
Let us define the "Short-Time" Active Power as follows:

$$P_{\text{active}}(t) = \frac{1}{2} \cdot \hat{\mathbf{U}}(t) \cdot \hat{\mathbf{I}}(t) \cdot \cos \left[\phi_{\text{stZ}}(t) \right]$$

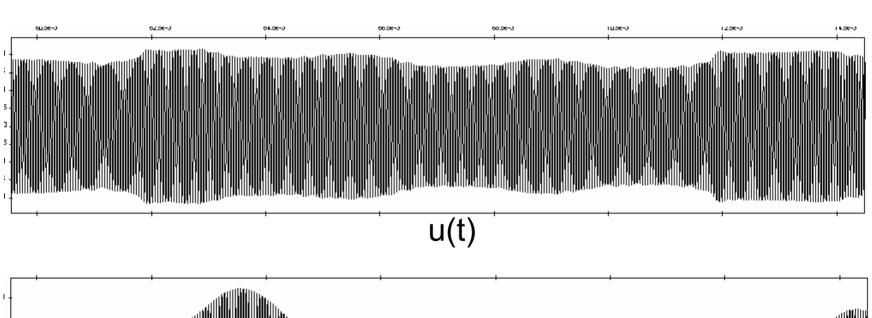
Then:

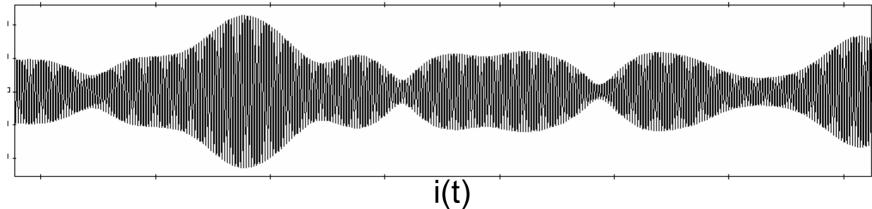
$$P_{\text{active}}(t) = \frac{\dot{i}(t) \cdot u(t) + \ddot{i}(t) \cdot \ddot{u}(t)}{2}$$

Computer Simulation Example

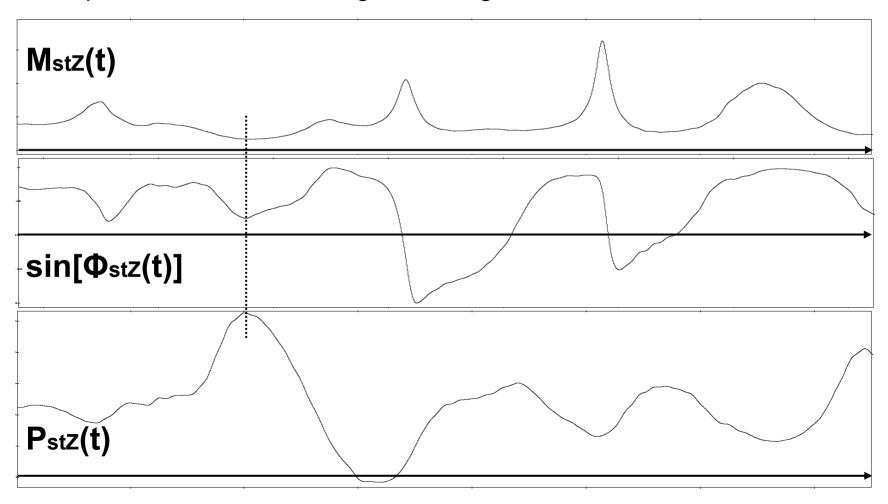


Field Test Measurements (from MMM ultrasonic system)





Computed "Short-Time" Magnitude, Argument, Active Power of the Load



Conclusion

Many Processes with fast changing load conditions can greatly benefit from "real-time" load parameters estimations

This can also dramatically enhance the global performances of some industrial processes.