Laboratory #1-Chap 3

Linear System Response: general case

Objectives

- Understand the difference and the relationship between a step and impulse response.
- Determine the limits of validity of an approximated impulse response.

Theory

The idealized impulse function has some of the following properties :

$$\delta(t) = \lim_{a \to 0} \frac{u(t) - u(t - a)}{a} \qquad \delta(t) = \frac{d}{dt}u(t)$$

R-C first order low-pass filter:

$$H(j\omega) = \frac{1}{1 + j\omega\tau} \implies H(s) = \frac{1}{1 + s\tau} = \frac{\frac{1}{\tau}}{\frac{1}{s + \frac{1}{\tau}}} \implies h(t) = \frac{1}{\tau} \cdot e^{-\frac{t}{\tau}} \cdot u(t)$$

Function	Laplace Transform	Fourier Transform
f (t)	F (s)	F(jω)
d f(t)/dt	$s F(s) - f(0^+)$	jω F(jω)
$\int_{-\infty}^{\bullet} t f(\tau) d\tau$	F(s) / s	F(jω) / jω
δ(t)	1	1
l e ^{-at}	1/s 1/(s+a)	- 1/(jω+a)
C	1/(S+d)	$1/(\omega a)$

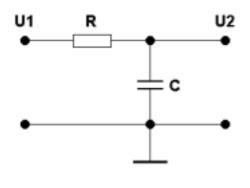
Step Response: $Y(s) = H(s) / s = y(t) = \int h(\tau) d\tau$ Impulse Response:h(t) = d y(t) / dt

==> The linear system impulse response is the derivative of its step response

Western Switzerland University of Applied Sciences Prof. J.-P. Sandoz, 11/2003

Procedure

1) Build the following R-C circuit:



With: $R = \Omega$, $C = nF \implies \tau = R \cdot C = s$

2) u1(t) is a square-wave with $u1_{low}=0V$ and $u1_{high}=1V$, 50% duty cycle. Choose an appropriate frequency in order to make sure that the period is at least equal to $10 \cdot \tau$. Verify that u2(t) is equal to the integral of this circuit impulse response! i.e:

$$u2(t) = 1 - e^{-t/\tau}$$
 (rising edge at $t = 0$)
 $u2(t) = e^{-(t-to)/\tau}$ (falling edge at $t = to$)

- 3) What happens if the square-wave frequency is not chosen correctly?
- 4) u1(t) is a rectangle pulse with $u1_{low} = 0V$ and $u1_{high} = 1V$.

ON-time: $t_{on} = \tau / 10$ OFF-time: $t_{off} = 10 \cdot \tau$

Verify that u2(t) is approximately equal to the impulse response of this circuit

Remember the scaling factor!!!

5) What happens if t_{on} and t_{off} are not chosen correctly ? Consider several situations.

Laboratory #2 – Chap 3

Linear System Response: general case

Objectives

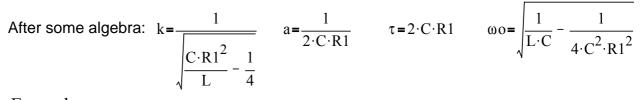
- Apply the Laplace Transform theory in a practical example.
- Understand the relationship between a filter bandwidth and its rise and/or fall time (transient mode)

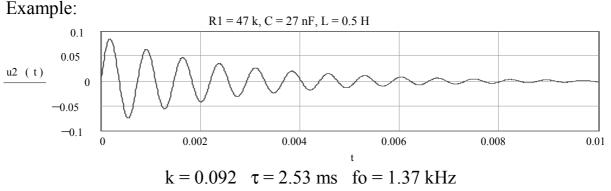
Theory

From Laplace Transform theory: $u2(t) = L^{-1} [L[u1(t)] \cdot L[h(t)]] = L^{-1} [U1(s) \cdot H(s)]$ h(t): second order band-pass filter (Rp $\rightarrow \infty$), u1(t): unit step: => U1(s) = 1/s

$$H(s) = \frac{\frac{S \cdot L \cdot \frac{1}{S \cdot C}}{S \cdot L + \frac{1}{S \cdot C}}}{R1 + \frac{S \cdot L \cdot \frac{1}{S \cdot C}}{S \cdot L + \frac{1}{S \cdot C}}} = \frac{\frac{1}{C \cdot R} \cdot s}{s^2 + \frac{s}{C \cdot R1} + \frac{1}{L \cdot C}} \implies Y(s) = \frac{1}{s} \cdot H(s) = \frac{\frac{1}{C \cdot R} \cdot s}{s^2 + \frac{s}{C \cdot R1} + \frac{1}{L \cdot C}}$$

From Laplace Transform table: $k \cdot \frac{\omega o}{\left(s^2 + a\right)^2 + \omega o^2} \implies k \cdot e^{-a \cdot t} \cdot \sin(\omega o \cdot t) = k \cdot e^{\tau} \cdot \sin(\omega o \cdot t)$





e i•a j

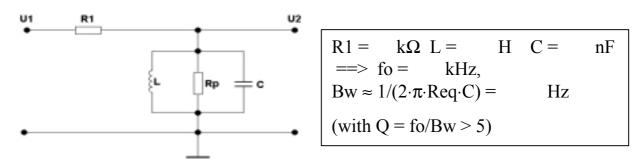
ADSP/Lab 3.3

Western Switzerland University of Applied Sciences

Prof. J.-P. Sandoz, 11/2003

Procedure

1) Build the following second order R-L-C band-pass filter:



- 2) u1(t) is a square-wave with $u1_{low}=0V$ and $u1_{high}=1V$, 50% duty cycle. Choose an appropriate frequency in order to make sure that the period is at least equal to 5/Bw. Measure *k*, τ and *fo* and compare your results with the theoretical values.
- 3) What happens if the square-wave frequency is not chosen correctly?
- 4) With the same signal generator parameters, divide R1 by 3. What happens?
- 5) With the same signal generator parameters, divide R1 by 10. What happens?
- 6) Impulse response measurement: From theory, we know that:

$$h(t) = \frac{d}{dt} y_{step}(t) = k \cdot e^{\frac{-t}{\tau}} \cdot \left(\omega \circ \cos(\omega \circ t) - \frac{1}{\tau} \cdot \sin(\omega \circ t) \right)$$

if $\omega \circ 10 \cdot \frac{1}{\tau} = h_{approx}(t) = k \cdot \omega \circ e^{\frac{-t}{\tau}} \cdot \cos(\omega \circ t)$

u1(t) is a rectangle pulse with $u1_{low} = 0V$ and $u1_{high} = 1V$.

ON-time: $t_{on} = 1 / (20 \cdot f_o)$ OFF-time: $t_{off} = 5 \cdot B_w$

Verify that u2(t) is approximately equal to the impulse response of this circuit

Remember the scaling factor !!!

- 7) What happens if t_{on} and t_{off} are not chosen correctly ? Consider several situations.
- 8) Apply a FSK signal (VCF input of your function generator driven by a squarewave of appropriate amplitude and frequency!) to your band-pass filter. Determine the fastest data rate allowing data recovery. Conclusion?

Choose:
$$freq_{high} \approx 1.5 \ freq_{low}$$
, $freq_{high} = fo$

ADSP/Lab 3.4

e i•a j

Western Switzerland University of Applied Sciences Prof. J.-P. Sandoz, 11/2003

Laboratory #3 – Chap 3

Linear System Response: general case

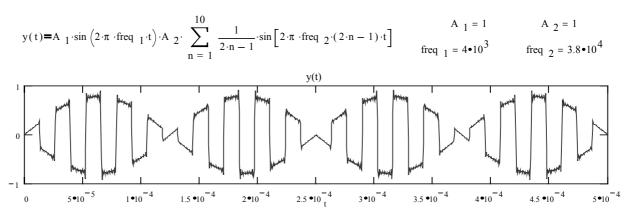
Objectives

- Understand multiplication in the time domain and the corresponding convolution in the frequency domain.
- Verify that the product of two periodic signals generates sums and differences of frequencies contained in the periodic signals.

Theory

 $\mathbf{y}(t) = \mathbf{x}\mathbf{1}(t) \cdot \mathbf{x}\mathbf{2}(t)$

 $x1(t) = A1 \cdot sin(2 \cdot \pi \cdot freq_1 \cdot t), x2(t)$: symmetrical square-wave of frequency freq₂



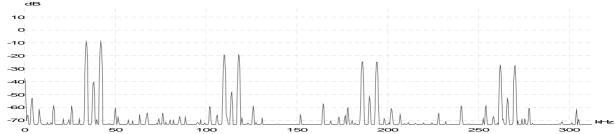
Time domain analysis:

Reminder: sin(a) sin(b) = 0.5 [-cos(a+b) + cos(a-b)]

Frequency components of y(t):

$1.38 \text{ kHz} \pm 4 \text{ kHz}$	relative amplitude: 1
$3.38 \text{ kHz} \pm 4 \text{ kHz}$	1/3
$5.38 \text{ kHz} \pm 4 \text{ kHz}$	1/5
m·38 kHz±4 kHz	1/m

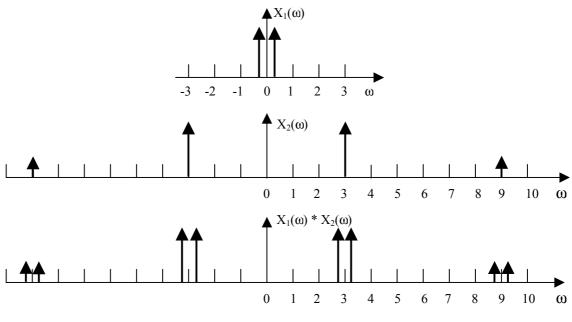
PicoScope Spectrum (4096 samples, linear scales)



Western Switzerland University of Applied Sciences

Frequency domain analysis (convolution):

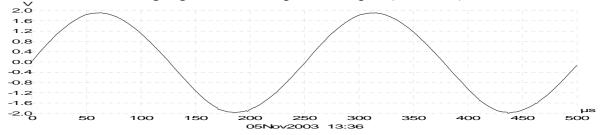
Concept:



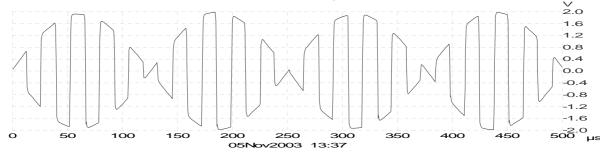
Procedure (with AMPMIX board)

Board extra-gain: 0 dB, Band-pass filter: OFF

Input a 4 kHz sine-wave to the AMPMIX board (Input). Adjust its amplitude so as to have the following signal at the amplifier output (AMPout):



Check that MIXout is as shown on the next Figure:



Use "PicoScope Spectrum Analyser" (No of spectrum bands: 4096, 1.5 MHz) to compare your display with the theory.

Laboratory #4 – Chap 3

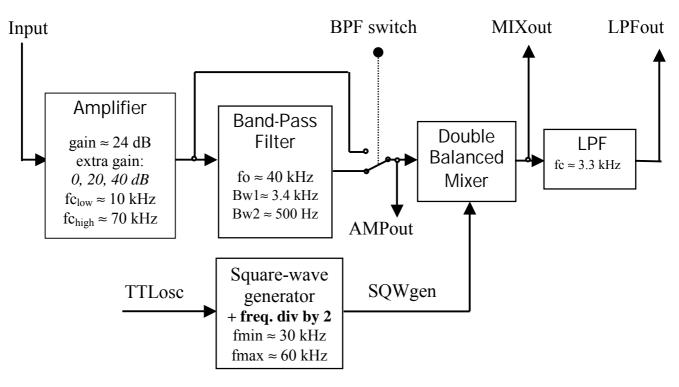
Linear System Response: general case

Objectives

- Understand "Frequency down-conversion".
- Verify that *"undesired frequencies (e.g. mirror image)"* can also convert down to *base-band*.

Theory

"AMPMIX" board bloc diagram:



Power supply: 5 (8 mA) to 18V (20 mA), Input impedance: 5 k Ω (AC coupling)

Amplifier:		z, fc _{high} $\approx 70 \text{ kHz}$		
	gain: ≈ 24 dB	, additional gain: $+20 \text{ dB} \text{ or} + 40 \text{ dB}$		
Band-Pass filter: Second order, resonant frequency adjustable around 40 kHz.				
Bandwidth: Wide (3.4 kHz) or Narrow (≈ 500 Hz)				
Square-Wave generator: Tunable fmin ≈ 30 kHz, fmax ≈ 60 kHz				
		External frequency control (TTLosc), $SQWgen_{freq.} = TTLosc_{freq}/2$		
Double balanced mixer: MIXout(t) = AMPout(t) · SQWgen(t), i.e. AMPout multiplied by ± 1				
LPF: Three	cascaded R-C	low-pass filters		

ADSP/Lab 3.7

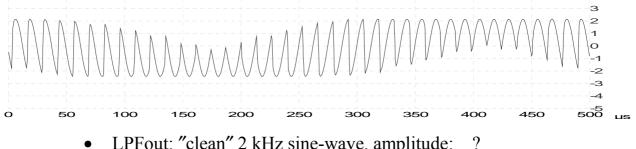
Western Switzerland University of Applied Sciences Prof. J.-P. Sandoz, 11/2003

Procedure (with AMPMIX board)

Part 1:

Input:	sine-wave	- 40 kHz -	100 mV peak-to-peak
Extra gain:	OFF	BPF: OFF	SQWgen: Local ($\approx 38 \text{ kHz}$)
Verify:			

- AMPout: "clean" 40 kHz sine-wave (i.e. no saturation), ≈ 1.6 V pp
- MIXout: must look as follows:



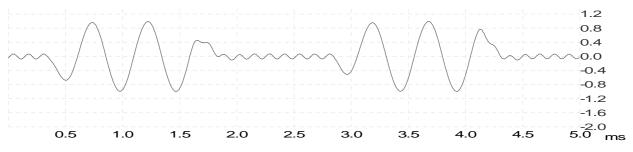
- LPFout: "clean" 2 kHz sine-wave, amplitude:
- Change the input sine-wave frequency in order to determine the output LPF cutoff frequency.
- Verify the "mirror" frequency concept (i.e. input signal frequency ≈ 36 kHz).
- Verify that if the input signal frequency is 2 kHz higher (or lower) than a local oscillator harmonic", then down-conversion does occur and LPFout is also a 2 kHz sine-wave. What can you say of LPFout signal amplitude?

Part 2:

```
FSK (freq<sub>L</sub>: 30 kHz and freq<sub>H</sub>: 40 kHz), 1000 bits/s - 100 mV pp
Input:
Extra gain: OFF
                              BPF: OFF
                                                     SQWgen: Local (\approx 38 \text{ kHz})
```

Verify:

- AMPout: "clean" 30 kHz and 40 kHz sine-wave (i.e. no saturation)
- LPFout looks as follows:



- Explain why!
- Slowly decrease freq_H. What happens?

ADSP/Lab 3.8

Laboratory #5 – Chap 3

Linear System Response: general case

Objectives

- Understand..... Band-Pass Filter rise-time
- Prove....

Theory

•••••

Procedure

.....

ADSP/Lab 3.9

Prof. J.-P. Sandoz, 11/2003