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The time-varying characteristics of non-linear systems responding to typical
identification signals are addressed and the potential for identifying some time-varying
patterns is shown. Specifically, the instantaneous frequency of system responses is analysed,
and shown to characterise non-linear behaviour. The analysis is done via the Hilbert
transform. Examples include a Duffing oscillator and a memoryless system of the type
y= x3. The possibility of enhancing the time–frequency resolution, as compared to classic
Fourier methods, is also briefly addressed.
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1. INTRODUCTION

1.1.   

The last decade has witnessed a sudden increase in the interest in time–frequency analysis
methods by the engineering community, particularly in the area of diagnostics e.g. [1, 2].

Frequency domain representation is traditionally computed via Fourier methods
(although model based methods can also be used for this purpose). Fourier series and
transforms cannot easily localize information in the time domain. This limitation
prompted the development of combined time–frequency methods many decades ago.
However, the works of Gabor [3], Priestley [4], and others were virtually ignored by
practitioners (certainly in the area of diagnostics), and only spectrograms, waterfall
representations, with their inherent limitation, were used in an almost intuitive fashion.
The situation has changed significantly in the last decade and a recent review paper [5]
addresses some of the issues involved.

1.2.   

Limiting ourselves to the area of mechanical engineering, most of the works being
published now show the application of time–frequency methods in analysing, describing
and classifying signals. Typically the response of system being monitored is analysed in
order to show the potential for recognising the existence of some phenomena, for example
an existing or developing defect. Localisation both in time and frequency can enhance the
identification of many defects. Signal processing often allows us to ‘look’ at information
from different perspectives, and in that sense, time–frequency analysis is another important
tool for such purposes.

In addition to the representation of system responses, signals can also represent systems.
Typically the impulse response of a linear system completely describes its properties, and
can be used to model it. For such a system, the response y(t) is given as a convolution
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of an excitation x(t) and the impulse response h(t): y(t)= h(t) ( x(t), where ( denotes
convolution. The convolution being commutative, interpretation of the excitation signal
and the system’s signal (i.e. the impulse response) as being essentially different is not
justified, and the same signal processing tools can be applied to both. It is thus natural
to inquire whether time–frequency methods might be useful for analysing signals
describing systems, for example impulse responses. Let us look at the one corresponding
to a single degree of freedom (sdof) second-order system, typically a decaying oscillating
response [Fig. 1(a)]. For a linear system the oscillating frequency is constant, while the
intensity (envelope) is well described in the time domain. No additional insight should be
gained by ‘looking’ at the information in the time–frequency domain, as opposed to the
time or frequency domain separately.

1.3. - 

Consider the impulse response of an sdof second-order non-linear system, for example
a Duffing system with a cubic stiffening term

mÿ+ cẏ+ k(1+ oy2)y=0. (1)

The impulse response of the system is shown in Fig. 1(b). The period of oscillation varies
during the decay. The physical interpretation of this behaviour is easily obtained by
observing that the increased stiffness for large amplitude excursions will be accompanied
by a faster oscillation. This behaviour could be emphasised via a time–frequency
representation, showing variations of intensities and frequencies along the time axis. One
traditional way to represent this has been via ‘backbone curves’ [6], showing the average
natural frequency as a function of oscillation amplitude (this is shown in Fig. 4 for the
Duffing oscillator). Thus, it seems that time–frequency methods could be an important
analysis tool for non-linear systems, particularly signals representing systems, for example
impulse responses. Having started from the premise that the interpretation/analysis of
signals and impulse responses could be interchanged in the case of linear systems (due to
convolution properties), and thus wondering whether time–frequency methods should be
applied to both, we find ourselves suggesting their application to non-linear systems where
the convolution operation does not apply!

Figure 1. Free responses: (a) linear vibration system; (b) the Duffing model (o=5).
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2. THE HILBERT TRANSFORM AS AN ANALYSIS TOOL

The Hilbert transform is defined by

H[y(t)]= ỹ(t)=
1
p g

a

−a

y(t)
t− t

dt= y(t) ( 1
pt

. (2)

The Hilbert transform of an harmonic signal is also harmonic and for x= xmax cos(t),
H[x]= xmax sin(t), and H[H(x(t)]=−x(t). Thus the Hilbert transform is often interpreted
as a 90° phase shifter. The transform forms the basis of the definition of an analytic signal.
This is the natural extension of real signals to complex signals which is one of the
cornerstones in the discipline of signal processing. The transform enables us to define
signals using a complex exponential, as

X(t)= x(t)+ jx̃(t)=A(t) ejc(t) (3)

with A(t)= [y2(t)+ ỹ2(t)]−1/2, c(t)= tan−1 ỹ(t)/y(t). Such a representation has been found
useful for many types of signal, especially narrowband ones, where A(t) is usually ‘slow’
compared to the signals temporal variations; hence the names of envelope and
instantaneous phase for A(t) and c(t). The definition of instantaneous frequency as the
time derivative of c(t): f(t)=dc/dt can form the basis of a time–frequency representation,
see for example [5]. This is especially convenient for situations where the product of time
duration and signal bandwidth is sufficiently large. Such a situation exists, for example,
for signals of oscillating character. However, problems arise with multicomponents signals,
for example chirps (swept sines) whose frequencies vary differently [7]. In what follows
the time–frequency patterns associated with non-linear systems are investigated, where the
time functions are of relatively regular oscillating character. For these types of signal,
analysis via the Hilbert transforms show considerable potential.

3. SYSTEMS WITH MEMORY

We shall consider systems described by a differential equation and limit ourselves to the
free response of an sdof second-order non-linear systems. A typical conservative non-linear
system would be of the form

ÿ+ k(y)=0. (4)

For a mass spring system, the second term would represent the restoring force per unit
mass as a function of the displacement y. Traditionally the motion is studied in the phase
plane y, ẏ, and an average natural period is then computed as [6]

Taverage =4 g
ymax

0

dy

$2 g
ymax

y

k(j) dj%
1/2

. (5)

The average period Taverage and its reciprocal faverage =1/Taverage are thus a function of ymax.
We now define a time-varying frequency as the reciprocal of the time-varying period T,
computed by
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Figure 2. Duffing model (o=5): (a) phase plane (——, c=0, –––, c=0.1); (b) relative phase plane (——),
and analytic signal (–––) representation.

T=4 g
lu

lu

du

$2 g
y max

y

k(j) dj%
1/2

(6)

where the complete cycle has been divided into n sections D8= p/2n, the new limits
l1 = cos[p/2−D8(i−1)], lu =cos (p/2−D8i), and T becoming continuous in the limit for
large n. As an example we show the phase plane for a Duffing oscillator (Fig. 2).
Figure 2(a), corresponding to the specific case of m=1, c=0, 7=5, shows the phase
plane, and Fig. 3(a) and (b) the time variations of the period and corresponding
displacements. Thus, the system is characterised by a time-varying natural frequency
1/T(t).

We now attempt to analyse the system via the Hilbert transform. This enables us to
compute the time varying envelope A(t) and the instantaneous phase c(t) and frequency
(the first derivative of the phase). We may plot a radius vector A(t) with phase c(t).

Figure 2 shows the rotating vector for the specific Duffing system analysed. Also
compared are the envelopes/displacements as well as the reciprocal of the time-varying
period and instantaneous frequency dc/dt (see Fig. 3). Both representations give very
similar results. The exact relation between the phase plane representation, and the
Hilbert-based one are discussed in detail in [8].

We now address the more common case of systems with damping. Let us assume that
the system’s equation can be described by the damping c and natural frequency v0

considered as functions of the envelope magnitude A. The phase plane representation is
shown in Fig. 2(b) (dashed line).

It is possible to derive a related equation based on analytic signals. By adding to

ÿ+ cẏ+v2
0y=0 (7)

an imaginary part equal to it’s Hilbert transform, equation (7) can then be cast in the form

Y� + cY� +v2
0Y=0. (8)

Solving equation (8) enables us to compute v0(t) and A(t) as a function of time [9, 10].
Eliminating the time variable from both functions results in v2

0 (A), the classical backbone.
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The function A(t) for the case o=5 is shown in Fig. 1(b), together with the decaying
oscillating response. The corresponding backbone is shown in Fig. 4.

We note that one effect of the non-linearity is the time variation of the system’s natural
frequency. While we have shown this specifically for the Duffing oscillator, time variable
features are encountered for all non-linearities characterised by time-varying damping as
well as time-varying natural frequency [9, 10]. It is important to emphasise that the system
itself is a time invariant non-linear system, but that we are treating the impulse response
function as a signal with time-variable characteristics.

4. SYSTEMS WITHOUT MEMORY

Systems whose input/output characteristics can be described by an algebraic expression
in the time domain are memoryless: at any instant the response depends only on the current
excitation, and not on its past. A general case would consist of a response y and excitation
x related by y=G(x). For a sinusoidal excitation, the output will consist of a fundamental
and harmonic components. Such a description is basically a frequency domain one, based
on Fourier analysis. For this specific case another representation is possible, based on a
variable instantaneous frequency signal. Let us assume that the signal y can be decomposed

Figure 3. Representation of the Duffing equation solution (o=5, h=0): (a) and (c) the solution; (b) the
current period from the phase plane (n=100); (d) the instantaneous frequency from the analytic signal.
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Figure 4. Backbone of the Duffing model (o=5).

into two components y(t) cos (vt)+ k cos (vt). Figure 5 shows a complex representation,
based on rotating vectors, for kQ 1.

y(t) equals the horizontal projection of the resulting vector. In a polar representation,
the vector is given by A(t), c(t) where both the envelope A(t) and the instantaneous phase
c(t) are affected by the second component of the signal, of frequency 2v. The
instantaneous phase is given by

c(t)= tan−1 sin (vt)+ k sin (2vt)
cos (vt)+ k cos (2vt)

(9)

We may actually use the standard definition of the instantaneous frequency.
v(t)=dc/dt for this signal, showing a variable frequency with time. This situation is
depicted in Fig. 6.

Figure 5. Analytic signal representation of a double component signal.



–   -  617

Figure 6. (a) Double component signal, (b) line 1, its instantaneous frequency; and line 2, instantaneous
phase.

For the case where the signal function is not known explicitly, but given, say, by some
measurement, the instantaneous frequency must be computed. In principle this should be
possible again via the Hilbert transform. As an example let us investigate the cases

case 1: y= x;

case 2: y= x3, x=cos (vt) (9)

Figures 7 and 8 show the time signal y(t), the Hilbert transform, the instantaneous phase
and frequency for both cases. It is evident that a completely different characterisation of
the signal results. The instantaneous frequency is constant for case 1, and fluctuating for
case 2. Some care is needed in the characterisation, as the end effects are due to the

Figure 7. Signals and envelopes: (a) case 1, (b) case 2, (c) case 2 (short duration), (d) case 2 (noisy signal).
Lines: 1, signal; 2, its Hilbert transform; 3, envelope.
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Figure 8. Instantaneous phase and frequency: (a) case 1, (b) case 2, (c) case 2 (short duration), (d) case 2 (noisy
signal). Lines: 4, frequency; 5, phase.

difficulty of using the Hilbert transform around the time t=0. We have chosen, for
example, to ignore (discard) these end effects. The usefulness of our description has still
to be determined; sensitivity to noise will certainly be of importance. One example of
analysing our cases with some additive noise is shown in Fig. 8(d). The general behaviour
seems unchanged. It would be interesting to compare this time domain analysis to a
Fourier-based frequency domain one. Case 2 is analysed for two different signal durations.
For the longer signal [see Figs 7 and 8(b)], the non-linearity is seen in the frequency domain

Figure 9. (a) Power spectrum of case 2 and (b) case 2 short duration.



0.2
Time (s)

0.4 10.8

(b)7.5

4.5

7
6.5

6
5.5

5

0.6 1.2 1.4

0.5
F

re
qu

en
cy

 (
H

z)
1

(a)25

20

15

10

1.5 2 2.5 3 3.5 4 4.5
F

re
qu

en
cy

 (
H

z)

–   -  619

Figure 10. Time–frequency representation of (a) the Duffing solution and (b) double component signal.

as a third harmonic, and in the time domain by the fluctuating instantaneous frequency.
For the short signal [see Figs. 7 and 8(c)], the resolution in the frequency domain is
insufficient, but the non-linearity is still identifiable by the fluctuation in the instantaneous
frequency. The limitation due to the uncertainty principle suggests the use of a different
analysis domain, one of which could be the time–frequency characteristics.

5. CONCLUSION

In this short paper, we have addressed the possibility of characterising non-linear
systems by the time–frequency variations of some system signals, i.e. signals representing
the system’s dynamics. Two examples were given. One, a Duffing oscillator showed time
variations in the natural frequency of its impulse response. A more traditional
representation of this behaviour is shown in Fig. 10(a). Here, time and frequency axes are
used together with a grey scale for intensity variation, corresponding to the numerical
example of Section 3. A second example consisted of the non-linear algebraic system (9).
The system’s characteristics were the response to a sinusoidal excitation. Figure 10(b)
shows this, again in the more traditional time–frequency representation. The objective of
signal processing is often to describe data from different perspectives (time domain,
frequency domain, amplitude domain, etc.). Often we find advantages in specific
representations. We have discussed the existence of such a representation, the
time–frequency one, for signals representing systems, as compared to the traditional
practice to apply time–frequency methods to system responses. For non-linear systems,
specific patterns may be very indicative. It may be possible to reduce specific error
mechanisms. For example, in Section 4 the effect of the Uncertainty Principle related
resolution (in frequency analysis) seemed to be reduced in our analysis. The Hilbert
transform seems to have much potential for this approach. Our analysis is of course of
a preliminary nature, and many issues have to be investigated rigorously.
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