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1. INTRODUCTION

The Hilbert Transform (HT) and its properties, applied to the analysis of linear and
non-linear vibrations, are discussed at great length in [1]. The application of the HT to
a signal provides some additional information about amplitude, instantaneous phase and
vibration frequency. This information is valid when applied to the analysis of non-linear
vibration motions [2]. Moreover, it has been noted that the HT should also be used for
solving an inverse problem—the problem of vibration system identification.

Previous results of applying the HT to time domains for non-linear vibration system
identification are presented in reference [3]. The simplest natural vibration system, having
mass and a linear stiffness element, in a time domain gives rise to pure harmonic motion.
In the presence of non-linear elastic forces, the natural frequency will depend decisively
on the amplitude of vibration. Real free vibration always gradually decreases in amplitude
due to system energy losses. Energy dissipation lowers the instantaneous amplitude
according to a non-linear dissipative function. As non-linear dissipative and elastic forces
have distinct effects on free vibrations, the HT identification methodology [4] enables the
determination of some aspects of the behavior of these forces. For this identification in
the time domain it was proposed that relationships be constructed between the damping
coefficient (or decrement) as a function of amplitude plus relationships between the
instantaneous frequency and amplitude (system backbone) [5].

Note, however, that previous work incorporated a theoretical assumption about a given
vibration signal, which should have a slowly varied envelope (weak non-linearity
condition). This paper describes a generalized HT identification approach for non-linear
free vibration of one or two degrees of freedom system without the assumption of weak
non-linearity.

2. APPLICATION OF THE HT

2.1.     

The single-value extraction (demodulation) of an envelope and other instantaneous
functions of a signal is based on the Hilbert integral transform [1]. The HT of a
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real-valued function x(t) extending from −a to +a is a real-valued function defined
by

H[y(t)]= ỹ(t)=
1
p g

a

−a

y(t)
t− t

dt,

where ỹ(t) is the HT of the initial process y(t), and the meaning of the integral implies
its Cauchy principal value. Thus ỹ(t) is the convolution integral of y(t) with (1/pt), written
as ỹ(t)= y(t) ( (1/pt). The double HT yields the original function with an opposite sign,
and hence it carries out shifting of the initial signal in −p. The power (or energy) of a
signal and its HT are equal. For n(t) low-pass and y(t) high-pass signals with
non-overlapping spectra [1],

H[n(t)y(t)]= n(t)ỹ(t). (1)

More generally, the HT of a multiplication of two varying functions with overlapping
spectra can be written in the form of a sum of two parts [6]

H[n(t)y(t)]=H{[n̄(t)+ n1 (t)]y(t)}= n̄(t)ỹ(t)+ ñ1 (t)y(t). (2)

where n̄(t) is the slow (low-pass), n1 (t) is the fast (high-pass) signal component, and ñ1 (t)
is the HT of the fast component. The proof of the decomposition of a signal into a sum
of low- and high-pass terms, based on Bedrosian’s theorem the HT of a product, can be
found in reference [7]. For example, the HT of the square of the harmonics y=A cos f

is equal to H[y2(t)]=H[y(t)y(t)]= ỹ(t)y(t)=A2 sin (2f)/2, and the HT of the cube of the
harmonics is equal to H[y3(t)]=H[y2(t)y(t)]=A3(3 sin f+sin 3f)/4.

2.2.   

The non-linear restoring force of a second order conservative system can be represented
as the multiplication of a varying non-linear natural frequency v0 (y) and the system
solution

ÿ+ k(y)= ÿ+v2
01 (y)y=0. (3)

Assume, according to equation (2), that the varying non-linear natural frequency can be
separated into two different parts. The first part v̄0 is much slower and the second
component v1 (y) is faster than the system solution, so the equation of motion will be

ÿ+[v2
0 +v2

1 (y)]y=0. (4)

Now, according to the multiplication property of the HT, equation (2) we use the HT for
both sides of equation (4) ÿ	 +v2

0 ỹ+v 2
1

0 (y)y=0. Multiplying each side of the last
equation by j and adding it to the corresponding sides of equation (4) we obtain a
differential equation with analytical signal form Y� +v2

0 Y+[v2
1 + jv 2

1
0 ]y=0, where

Y= y+jỹ. This complex equation can be transformed to the commonly accepted form

Y� +jd0 Y+v2
0 Y=0, v2

0 =v2
0 +

v2
1 y2 +v 2

1
0 yỹ

A2 , d0 =
v 2

1
0 y2 −v2

1 yỹ
A2 , (5–7)

where v2
0 is the varying natural frequency function, and d0 is the fast varying fictitious

damping parameter. The equation obtained for the non-linear system has a varying natural
frequency consisting of a slow component, v0 and a fast component, as well as a fast
varying fictitious damping parameter d0. It should be noted that this non-stationary
equation is not a real equation of motion, but rather an artificial equation which produces
the same non-linear vibration signal.
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Let us consider a general case of SDOF conservative systems having the non-linear
elastic characteristics that could be expressed as a power series

k(y)= (o1 + o3 y2 + o5 y4 + · · · )y= y s
n

1

o2l−1 y2(2l−2) (l=1, 2, 3 . . . n). (8)

In particular, a non-linear system described by Duffing’s equation has only the linear and
the positive hard cubic spring k(y)=v2

0 (1+ o3 y2)y. After substituting the expanded
elastic characteristics equation (8) together with the solution y=A cos c into the varying
natural frequency equation (6), one can derive the particular type of the natural frequency
function. For example, in the presence of a cubic non-linearity, the speed of the
instantaneous frequency oscillation is twice that of the main vibration frequency
(Figure 1(a)). Generally, after averaging the natural frequency function, we obtain an
expression for the slow component of the natural frequency:

�v2
0 �=T−1 g

T

0

v2
0 (t) dt= o1 + 3

4 o3 A2 + 5
8 o5 A4 + · · ·=2−2l+202l−1

l−1 1A2l−2. (9)

It is important that the expression obtained in equation (9), corresponding to numeric
coefficients, repeats the structure of the initial non-linear elastic characteristics in equation
(8). In other words, the estimated average natural frequency function �v2

0 � includes all
information about the initial system and can be used for system identification.

It is also important that an average value of the fast varying damping parameter
equation (7) is equal to zero. Consequently, the fast varying fictitious damping force does
not affect the real average damping force. The obtained results explain the fact that the
instantaneous frequency as well as the backbones of non-linear systems after the HT
analysis exhibits an unusually fast oscillation (modulation) form [2].

By analogy, one can write the corresponding expressions for initial non-linear damping
in the system. An average damping function is also obtainable after the HT repeats the

Figure 1. The Duffing equation (o=5) representation: (a) analytical signal; (b) phase plane. 1, Solution; 2,
frequency; 3, radius vector; 4, damping.
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structure of the initial non-linear damping force characteristics and can be used for system
identification.

2.3.   

Resultant fast oscillation of the natural frequency does not associate with the HT
representation. It is an interesting and an essential effect of free vibration of non-linear
systems. The natural frequency oscillation also takes place according to the classic phase
approach. Traditionally, a new variable ẏ is introduced, enabling the exclusion of time
from the equation of motion although y and ẏ are still time dependent, so

ÿ=
dẏ
dt

=
dẏ
dy

ẏ.

In the new co-ordinates, equation (3) takes the following form:

dẏ
dy

=
k(y)
ẏ

.

Using the new variable ẏ is a traditional way of studying the motion of an oscillator by
representing this motion on the y–ẏ plane, where y and ẏ are orthogonal Cartesian
co-ordinates. After variable separation and integration, the phase plane takes the form
f ẏ dẏ= f k(y) dy. The phase plane radius vector r(f) for the non-linear system modulates
from its minimum value to its maximum value

r=zy2 + ẏ2. (10)

In addition, the phase plane angular frequency fluctuates between a maximum and a
minimum as the radius vector rotates between the y- and ẏ-axes of the phase plane

vp0 = d$arctan
ẏ(f)
y(f)1%df. (11)

To illustrate this interesting phenomenon of both the radius and the frequency of phase
plane modulation, let us consider an example of the Duffing equation:

ÿ+(1+ oy2)y=0, (12)

where o is the non-linear parameter. The radius vector square of the Duffing phase plane
derived from equation (10) appears as r2(t)=−0·5oy4 + r2

0 +0·5or4
0 , where r0 =max(y).

The obtained modulated radius vector together with its frequency and the solution in the
form y= r cos f (according to equations (10) and (11) are shown in Figure 1(b)). It is clear
that the radius vector and the frequency oscillate twice as fast as those of non-linear
solutions. In the general case of non-linear systems, the radius vector and the frequency
are fast varying functions of a phase angle.

2.4. -  

Consider a non-linear solution that consists of a composition of two quasi-harmonics,
each with a slow variable amplitude and frequency in the time domain. In this case, the
signal can be modelled as a weighted sum of monocomponent signals, each with its own
instantaneous frequency and amplitude function: that is,

Y(t)=A1 e j f t
0 v1 dt +A2 e j f t

0 v2 dt, (13)
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with A1, A2, v1 and v2 being unknown functions in the time domain. One of the questions
arising immediately from this representation is: How will the combined signal Y(t) be
separated into its two initial parts? The HT also plays an important role in the signal
decomposition and leads to practical results [8, 9].

The envelope and the instantaneous frequency of the double-component vibration signal
Y(t) are

A(t)=$A2
1 +A2

2 +2A1 A2 cos 0g (v2 −v1) dt1%
1/2

, (14)

v(t)=v1 +
$A2

2 +A1 A2 cos 0g (v2 −v1) dt1%
(v2 −v1)−1A2 . (15)

From equation (14), it can be seen that the signal envelope consists of two different parts;
that is, a slowly varying part including the sum of the component amplitudes squared,
A2

1 (t) and A2
2 (t), and a rapidly varying (oscillating) part, the multiplication of these

amplitudes with function cos of the relative phase angle between two components.
Eliminating the oscillating part cos [f (v2 (t)−v1 (t)) dt] from equations (14) and (15), we
shall find the equation between the signal instantaneous characteristics (envelope and
frequency) and the initial four parameters of the signal components:

A2(t)=
(A2

1 −A2
2 ) (v2 −v1)

v1 +v2 −2v
, A1 $A2, v1 $v2. (16)

Equation (16) determines the signal envelope A as a function of instantaneous frequency
v in the form of an hyperbola, the length and curvature of which depends on four initial
parameters.

2.4.1. Estimating the amplitude of each component
Assume that the relative phase angle f (v2 (t)−v1 (t)) dt is large enough to show a

number of ‘‘beatings’’ of two quasi-harmonics:

bg
t

0

(v2 (t)−v1 (t)) dtb�2p. (17)

For such a case, it is possible to separate the slow and the fast (oscillating) parts of a signal
envelope (mentioned above) by using an ordinary filtration in the frequency domain. Thus
only the fast part A2

f (t) will be retained after high pass filtration of the square of the signal
envelope (see equation (14)):

A2
f (t)=2A1 (t)A2 (t) cos 0g

t

0

(v2 (t)−v1 (t)) dt1. (18)

This new function is now just a monocomponent signal. After repeating application of the
Hilbert transform [8], the new envelope extraction is readily achieved Am (t)=2A1 (t)A2 (t)
and the new instantaneous frequency is then

2vm (t)=v2 (t)−v1 (t), (19)
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where a positive sign of vm (t) should be used in assuming that the first component
frequency is lower than the latter (v1 (t)Qv2 (t)), or a minus sign should be used in the
opposite case.

Then, using an algebraic transform, we obtain a simple formula for amplitude
components estimation:

A1 (t)=0·5[(A2
s +A2

m )1/2 2 (A2
s −A2

m )1/2],

A2 (t)=0·5[(A2
s +A2

m )1/2 3 (A2
s −A2

m )1/2], (20)

where A2
s (t)=A2(t)−A2

f (t)=A2
1 (t)+A2

2 (t) is a slow part of the square of the signal
envelope. An upper sign before the square root should be used in assuming that the first
component is stronger than the other one (A1 (t)qA2 (t)), or a lower sign should be used
in the opposite case.

2.4.2. Instantaneous frequency estimating
The instantaneous frequency of each component can also be estimated after repeated

application of the Hilbert transform from equations (16) and (19):

v1 (t)=v(t)2vm (t)0A2
1 (t)−A2

2 (t)
2A(t)

−11, v2 (t)=v1 (t)2vm (t), (21)

where A1 (t), A2 (t), v1 (t) and v2 (t) are the initial parameters of the quasi-harmonics, and
2vm (t) is the instantaneous frequency of the oscillating part of the signal envelope (see
equation (19)).

Equation (16) determines the signal envelope A as a function of instantaneous frequency
v in the form of a hyperbola, the length and curvature of which depends on the four initial
parameters of the biharmonics. If, in reality, the initial amplitude components decrease
in time, the estimated HT backbone (without averaging) stretches to a spiral function
instead of a short hyperbola.

The use of the developed technique could result in a more precise estimation of both
the amplitude and the frequency of each harmonic component of double component
vibration signals. In the case of two-degree-of-freedom non-linear systems, the technique
realizes time domain decomposition, which is able to estimate each mode of the non-linear
vibration system.

3. FEATURES OF THE HT IDENTIFICATION

3.1. -     

A vibration signal, suitable for the HT identification, should be a monocomponent
signal derived from a SDOF system directly, or obtained from a multi-DOF system after
a special decomposition or after band-pass filtration. This initial signal is

y(t)=A(t) cos c(t), (22)

where y(t) is the vibration signal (a real valued function), A(t) is an envelope (the
instantaneous amplitude) and c(t) is an instantaneous phase, assumed to be a free solution
of a non-linear vibration system. Taking into account the analytical signal representations
based upon equation (5) enables one to consider this equivalent equation of motion, so
as to estimate the instantaneous natural frequency and the instantaneous damping
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Figure 2. Typical non-linear backbones (a) and spring force characteristics (b). 1, Hard; 2, soft; 3, backlash;
4, pre-loaded spring.

coefficient. A general form of an initial differential equation of motion in the analytical
signal form could be written for frequency dependent (viscous) damping [4] as

Y� +2h0 (A)Y� +v2
0 (A)Y=0, (23)

and, for frequency independent (structural) damping, as

Y� +v2
0 (A)$1+ j

d(A)
p %Y=0, (24)

where Y= y(t)+ jỹ(t) is the system solution in the analytical signal form, h0 is the
instantaneous damping coefficient, v0 is the instantaneous undamped natural frequency,
d=2pz is the logarithmic decrement and z is the damping ratio. This equation of motion
will have rapidly varying coefficients that satisfy the envelope and instantaneous frequency
of the non-linear oscillating solution (equations (5)–(7)). Solving two new equations
separately for the real and imaginary parts of equations (23) or (24), we can write the
expression for the rapidly varying coefficients as a functions of a first and a second
derivative of the signal envelope and the instantaneous frequency:

v2
0 (t)=c� 2 −

A�
A

+
2A� 2

A2 +
A� c�
Ac�

,

h(t)=−
A�
A

−
c�
2c�

, d(t)=−
2pA� c�
Av2

0
−

pc�
v2

0
, (25)

where v0 (t) is the instantaneous undamped natural frequency of the system, h(t) is the
instantaneous damping coefficient of the system, d(t) is the instantaneous logarithmic
decrement, and c� and A are the instantaneous frequency and envelope (amplitude) of the
vibration with their first and second derivatives. Algebraically, equation (25) means that
the HT identification method FREEVIB uses initital displacement, velocity and also
acceleration at a time [5]. A traditional theoretical backbone of a non-linear system is a
dependency between the average free vibration frequency �v0 � (corresponding to the
average total cycle of vibration) and the displacement amplitude. Some typical non-linear
examples of backbone representation will be considered further in the paper (see Figure 2).

The proposed direct time domain method based on the HT allows a direct extraction
of the linear and non-linear parameters of the system from the measured time signal of
output. The resulting non-linear algebraic equations (25) are rather simple and do not
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depend on the type of non-linearity that exists in the structure. When applying this direct
method for transient vibration, the instantaneous modal parameters are estimated directly.
That enables us to consider an inverse identification problem; namely, the problem of
estimation of the initial non-linear elastic and damping force characteristics.

3.2. -    

As a result of the FREEVIB method, the set of duplet modal parameters (instantaneous
natural frequency v0 (A) and instantaneous damping h(A)) of each natural mode of
vibration is defined. The obtained modal model leads to a description of the structure’s
behavior as a set of vibration modes. This model could be defined as a set of natural
frequencies with corresponding unit mass and modal damping factors. However, it is
convenient to present an analysis of the structure’s response in a standard form and to
describe this with the Frequency Response Function (FRF). The standard excitation is that
of sinusoidal force applied to the input of the system at every frequency in the specified
range. Thus the tested system frequency response function can be written as a SDOF
frequency response function:

A=[2Amax h(A)]>6v0 (A)X$1−
v2

v2
0 (A)%

2

+
4h2(A)v2

v2
0 (A) 7 (26)

where A is the steady state vibration amplitude (proportional to the magnitude of the
FRF), v=2pf is the angular frequency of vibration, v0 (A)=2pf0 (A) is the angular
natural undamped frequency as a function of amplitude, and h(A) is the damping
coefficient, as a function of amplitude. In order to plot the FRF of the tested system after
the FREEVIB method, equation (26) should be further inverted:

v2 =v2
0 (A)−2h2(A)2 2v0 (A)h(A)XA2

max

A2 −1+
h2(A)
v2

0 (A)
,

0EAEAmax $1−
h2(A)
v2

0 (A)%
−1/2

. (27)

Using the last equation we can plot the frequency response function as separate curves
together with the system backbone (skeleton) curve.

3.3.   

3.3.1. Decomposition technique
Consider the case of a conservative system with an initial non-linear spring. According

to equation (23) the real non-linear elastic force will produce two different fast varying
fictitious members (elastic and damping). The real restoring force includes both the fast
hysteretic damping and the fast elastic force. Thus, the initial non-linear spring force
v0 (y)2y is split into two terms and, by summing over the terms, the initial non-linear force
characteristics can be extended. Therefore a simple composition of these two components
of the motion equation (equation (23)) will result in the real non-linear force
characteristics:

k[y(t)]=2h0 (t)ẏ+v2
0 (t)y, (28)
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where k[(y)] is the realelastic instantaneous force, h0 (t) is the instantaneous damping
coefficient and v0 (t) is the instantaneous undamped natural frequency.

3.3.2. Scaling technique
The obtained expression for the average value of the natural frequency function

qualitatively repeats the structure of the initial non-linear elastic characteristics. Due
to the estimation of the polynomial coefficients of the average natural frequency by
equation (9), we can simply reconstruct the initial non-linear elastic characteristics in
equation (8). An additional scaling technique could be considered based upon the total
energy, which is constant for conservative vibration systems. During free vibration, the
energy of the system at each moment is partly kinetic, partly potential and partly
fictitious alternating positive or negative damping. There are moments in time at which
all of the energy is stored mainly as a strain energy of elastic deformation and the
fictitious damping energy is equal to zero. These points correspond to the maximum
of the elastic force. Using, for instance, the biharmonics representation of non-linear
vibrations (equation (13)) one can show that these time points correspond to the
maximum displacement. This illustrates an important property of a conservative
vibration system, that around every peak point of the displacement the corresponding
value of the velocity is equal to zero, and vice versa. Therefore around every peak point
of the displacement, the contribution of the velocity in the varying instantaneous elastic
force is negligibly small: y(ti )=A(ti ), ẏ(ti )=0. The average value of the envelope of
the fictitious elastic force �v2

0 (A)�A will have a small bias relative to the maximums
of the spring force. The number of the peak points is far less than the total number
of points of a vibration signal, but it enables us to calculate a ratio set of average
and maximum (real) values of the elastic force. The obtained set is a scale function
that can adjust the average force characteristics. Finally, we normalize the elastic as
well as the damping forces as functions of the vibration envelope.

A complete understanding of the HT identification method entails noting its current
limitations: (i) each obtained force characteristics is a relative characteristic, dealing
only with a unit mass of the vibration system; (ii) each obtained force characteristic
is taken to be a static symmetric characteristics; and (iii) a tested system is certain to
be a light damped system with an underdamped damped term to produce an oscillating
motion.

In general, SDOF systems can include several elastic and damping individual
elements, combined integrally through parallel and/or series connections. If each
individual element of an SDOF system is known, it is usually possible to determine
the resultant or equivalent system force characteristics. However, the inverse problem
has no unique solution. Let us take an example of a system with two spring elements
connected in parallel, the first of which is a backlash and the second just a linear
spring. The corresponding equivalent force characteristics will have a bi-linear form
with a linear section for displacement, less than clearance and with different linear
sections for a higher amplitude. If only information on equivalent force characteristics
is available, it is not possible to reconstruct the initial system. In our example it can
be a bi-linear element, or two different initial elements.

The HT method, as a non-parametric method, forms resultant non-linear elastic and
damping force characteristics by direct extracting vibration system backbones and
damping curves. The non-linear spring force function, identified from vibration motion
of the SDOF system, will completely correspond to the initial system static elastic force
characteristic per unit mass. In the case of system model identification, one should use
additional information regarding the model structure and its element combination.
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4. NON-LINEAR VIBRATION IDENTIFICATION

4.1.     - 

Most well known cases of non-linearity occur in large amplitude oscillations of elastic
systems; for instance, non-linear spring elements with hardening or softening restoring
force, or non-linear damping quadratic or cubic force. Whereas the amplitudes of vibration
are large, the occurrence of these spring or damping non-linearities cannot be ignored.

As an example, we refer to the non-linear system with a soft spring and a cubic damping
characteristic:

ÿ+ c1 ẏ+ c2 ẏ3 + k1 y− k2 y3 =0,

where k1 =1, k2 =0·9, c1 =0·05, c2 =0·3 and y(0)=1. A simulation of a free vibration
signal was carried out by using a non-zero initial displacement as shown in Figure 3(a).
Both the obtained backbone and the damping curve (Figures 3(b) and (c)) have typical
non-linear form. Spring and damping force characteristics, estimated after the HT
identification, practically coincide with the theoretical characteristics. In Figure 4(a) is
shown an example of the instantaneous elastic force identification for the soft spring
system. Figure 4 includes the results of the identification according to equation (28)
together with the initial cubic force characteristics k(y)= (k1 − k2 y2)y, but these lines
agree so closely that there is virtually no difference.

4.2.     - 

There are cases in which vibration systems show their specific non-linear behavior only
in a small amplitude range of vibrations. A dynamic system with backlash is a typical
example of such mechanical non-linear systems, because for large amplitude values it
operates like a linear system with a constant natural frequency. Only for small vibration
amplitudes commensurable to a clearance value will the system display its non-linear
properties, where natural frequency decreases as amplitude decreases.

A mechanical system with a pre-loaded (pre-compressed) restoring force is another
example of non-linearity in the small amplitude range. Actually, for large vibration

Figure 3. High amplitude free vibration (a), backbone and FRF (b) and the damping curve (c).
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Figure 4. The high amplitude estimated spring force (a) and damping force (b) characteristics.

amplitudes natural frequency practically does not depend on vibration amplitude. Only
for small amplitudes of vibration motion commensurable to a pre-compressed deformation
will the natural frequency increase notably.

Among vibration systems with non-linear damping characteristics, there are structures
which show non-linearities only in a small amplitude range. As an example, we mention
a system with Coulomb or dry damping, the plot of the logarithmic decrement of which
versus the vibration amplitude is a monotonic hyperbola [5]. The presence of dry together
with viscous damping means that only for small vibration amplitudes does the logarithmic
decrement increase extremely.

By way of illustration, consider a non-linear system with backlash and dry damping:

ÿ+ c1 ẏ+ c2 sgn (ẏ)+ k(y)y=0,

k(y)=6k[1− (D/y) sgn (y−D)]
0

if =y =qD,
if =y =ED,

where c1 =0·017, c2 =0·007, k=1, 2D=0·3 and y(0)=8.
Simulation data (displacement) together with its envelope is shown in Figure 5(a), and

the obtained backbone and damping curve in Figures 5(b) and (c). The comparison of
simulated and estimated force characteristics is given in Figure 6. The obtained non-linear
backbone and elastic force characteristics practically coincide with the corresponded
theoretical system characteristics. Using the proposed HT analysis in the time domain, we
can extract both the instantaneous undamped frequency and also the real non-linear elastic
force characteristics.

4.3.   --- 

Generally, systems composed of several masses, non-linear springs and dampers require
more complicated representation. Consider the equations of motion, for example, for a
coupled 2-DOF system without damping:

m11 ÿ1 + k11 (y)y1 + k12 (y)y2 =0, m22 ÿ2 + k21 (y)y1 + k22 (y)y2 =0, (29)
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Figure 5. Low amplitude free vibration (a), backbone and FRF (b) and the damping curve (c).

where k11 (y), k22 (y), k12 (y) and k21 (y) are non-linear springs or coupling spring functions.
Assume that non-linear spring elements are relatively small and that the system behaves
like a quasi-linear system. In this case we can present each weakly non-linear subsystem
in the neighborhood of some amplitude, as an approximate subsystem with equivalent
linearized elements: ki (y)1 k*i :

m11 ÿ1 + k*11 y1 + k*12 y2 =0, m22 ÿ2 + k*21 y1 + k*22 y2 =0. (30)

After using any decoupling technique, we will have several corresponding decoupled
equations of motion. For linear systems, each obtained natural frequency is constant and

Figure 6. The low amplitude estimated spring force (a) and damping force (b) characteristics.
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Figure 7. Double component free vibration (a) and the instantaneous frequency (b).

differs from the partial subsystem natural frequency according to the decoupling
co-ordinate transformation. In the case of non-linear systems, natural frequencies become
functions of amplitude as well, since each natural frequency, corresponding to the normal
co-ordinate, will be controlled by the linearized elements (equation (31)).

Making this decoupling technique for a set of amplitudes and for the corresponding
equivalent springs, we can extract the non-linear system backbone together with the
corresponding force characteristics for each quasi-linear mode. According to the
decoupling co-ordinate transformation, the obtained non-linear force characteristics
differ from their initial subsystem form, but do hold their main qualitative
representation.

An example of the non-linear system considered here is a 2-DOF hard spring system
with equation of motion,

ÿ1 + c1 ẏ1 + k1 y1 + k3 y3
1 + k2 (y1 − y2)=0,

ÿ2 + c2 ẏ2 + k2 y2 − k2 (y1 − y2)=0,

where k1 =1, k2 =1, k3 =7·0, c1 =0·1, c2 =0, y1 (0)=1·0 and y2 (0)=0. Simulated free
vibration together with the envelope and the instantaneous frequency is shown in Figure 7.
The decoupled component after the HT signal decomposition is illustrated in Figure 8. The
corresponding backbone (Figure 9(a)) indicates the type of non-linear hardening spring,
and small distortion of the damping curve (Figure 9(b)) can be attributed to non-linear
effects. The obtained elastic force characteristic (Figure 9(c)) repeats the initial hard spring
form of the decoupled subsystem, but the obtained damping force characteristic
(Figure 9(d)) differs from the initial linear function due to the decoupling co-ordinate
transformation.

5. CONCLUSIONS

We can draw the following conclusions from the analytical signal representation.
Whatever the method of non-linear representation, both the instantaneous frequency and
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Figure 8. Decoupled free vibration: (a) first component; (b) second component.

the amplitude of free vibration are complicated modulated signals. Non-linear solutions
can be represented by an expansion of members with different frequencies or by a time
varying signal with oscillated instantaneous frequency and envelope. The instantaneous
frequency and envelope of non-linear vibration obtained via the HT are time varying fast
oscillating functions. For example, in the presence of a cubic non-linearity and a threefold
high harmonics, the frequency of the instantaneous parameter oscillation is twice that the
main frequency of vibration. The dependency between the average envelope and the
average instantaneous frequency plots the backbone that practically coincides with the
theoretical backbone of non-linear vibrations. Using the proposed HT analysis in the time
domain we can extract both the instantaneous undamped frequency and also the real
non-linear elastic force characteristics.

Figure 9. The first component estimated backbone and FRF (a), the damping curve (b), the spring force (c)
and the damping force (d) characteristics.
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