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A technique for non-linear system investigation based on the Hilbert transform enables
us to identify system instantaneous modal parameters during free vibration analysis and
various kinds of excitation of the dynamic systemn. The direct time domain approach allows
the direct extraction of linear and non-linear systems parameters from a measured time
signal of input and output. This paper describes forced vibration analysis, and the proposed
method determines instantaneous system modal parameters even if an input signal is a high
sweep frequency quasi-harmonic signal or random. Some examples of forced vibration
analysis of a non-linear system are included.

. INTRODUCTION

In the recent past a method of studying a dynamic system, based on the Hilbert transform,
was proposed for free vibration analysis, where the input signal is an impulse or a shock
{1}. The ‘FREEVIB’ method was suitable for testing linear and non-linear systems and for
instantaneous modal parameters identification by free vibration analysis, including the
concrete type of non-linear spring and damping characteristics for each mode of the
vibratory system. For a great number of real engineering structures with forced quasi-
harmonic excitation, it would be useful to consider a new method of modal analysis of
non-linear systems with input signal excitation.

2, SYSTEM WITH VISCOUS BAMPING

If we refer to the transformation from equation (2) to equation (3) in part I [1] then,
by analogy, we get a differential equation in an analytic signal form for forced vibration
of a quasi-linear sdof system with viscous damping

Y+ 28,(A)Y + 03(A)Y = X[m (0

where Y(r) = A(t) e#? is a solution of the system, X (¢) = A (¢) e/ is the forced excitation
in the analytical signal form, A(A4), w(A4) is the symmetrical viscous damping and elastic
characteristics of the system, m is the mass of the system and ¢, is the undamped natural
frequency. Using the analytic signal form for the system solution and for the excitation
¢quations (1) and (4) in part I [1] we obtain the equation for forced vibration

A
A

where A, w is the envelope and instantaneous frequency of the solution of the vibratory
system.

A 4
Y[Z——co2+wﬁ+2huz +j(2 w+d +2h0w):|=X(r)/m (2)
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2.1, MODAL PARAMETER ESTIMATION
Solving two equations for real and imaginary parts, equation (2), one can write the
expression for instantaneous modal parameters as
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where w,(¢) is the instantaneous undamped natural frequency of the system, A,(¢) is the
instantaneous damping coeflicient of the system, w, A is the instantaneous frequency and
envelope (amplitude) of the vibration with their first and second derivatives (@, 4, A) and
a(t)=Re[X()/Y(2)], B(t)=Im[X(z)/Y(¢)] are rcal and imaginary parts of input and
output signals ratio according to the expression

X SO +HOFEO  FOO —xOFO)
Yo - O AO="m0 R T 0 10

where x(¢), () is the force excitation and its Hilbert transform, y(#), ¥{(t) is the vibration
of the system and its Hilbert transform.

A formula for modal parameters identification, equation (3), consists of a first and
second derivative of the signal envelope and instantaneous frequency, which compensates
for transient processes in a dynamic system and determines modal parameters in more
complicated testing conditions, for instance when excitation is a non-stationary quasi-
harmonic signal with a high sweep frequency. Making a comparison between equation (6)
of Part I [1] and the equation for instantaneous modal parameters determination in the
case of forced vibration analysis equation (3), it is possible to see that equation (3) is more
general, because apart from members with envelope, instantaneous frequency and their
derivatives it includes members with input and output signals ratio. When there is no
excitation of the system (a(r) = (1) = 0) equation (3) becomes equal to equation (6) of
Part I [1] for instantaneous modal parameters determination in the case of free vibration
analysis.

(4)

2.2. MODAL MASS VALUE ESTIMATION

As far as equation (3) includes mass value, which is unknown a priori, it has first been
necessary to define the modal mass value m. In most practical cases the mass value is
constant and the natural frequency of the system w, does not vary for a short period of
time A:. Eliminating this natural frequency from equation (3) the mass can be expressed

through
BA
A (a o

4 4 24 Ao
( S T Aw)
where A is the deviation of the corresponding functions in the numerator and denominator
during time A:z. The use of derivatives for the mass calculation m = d( - }/d( - } because of
errors in the third differentiation of experimental data is not recommended.
Representing values of the function in the numerator on the vertical axis and values of
the function in the denominator on the horizontal axis for different sets of time points,
we get a plot, where the mass given by tan of the slope angle of straight line for a linear
sdof system. For a great number of points this mass value calculation could be also done

m =

&)
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by the least squares method. Thus using the vibration and exciting signals, their Hilbert
transforms, first and second derivatives of the vibration we can determine modal
parameters of the system according to equation (6) of part I/the present equation (5). It
is essential that the instantaneous frequency of an input signal w have to vary in time,
exciting forced vibration with different frequencies.

2.3. STIFFNESS VALUE AND DAMPING FORCE ESTIMATION

Provided that mass value m, natural frequency w, and damping coefficient 4, are known,
stiffness & and damping force ¢ can be calculated as a combination of these functions
considering equation (2) of part I

k = may, ¢ =2mh,. (6)

In a linear sdof system with viscous damping the system parameters are constant and do
not relate to the amplitude or the frequency of vibration. For a non-lincar system all these
parameters, except its mass, could depend on the amplitude or (and) the frequency of
vibration. Interaction between the natural frequency and the envelope represenis a
backbone (skeleton curve) of the non-linear system. Interaction between the damping
coefficient, the envelope and the forced frequency indicate the type of friction force in the
system.

3. SYSTEM WITH STRUCTURAL DAMPING

Let us consider a forced vibration of a quasi-linear sdof system having structural
damping or frequency-independent friction

?+wg(,4)[1 + j@]ywﬁm ™

where §(A4) is the logarithmic vibration decrement. Using the system solution and its
derivatives in the signal analytic form equation (1) and equation (4) of part T we receive
two equations for real and imaginary parts and then get the equations for the natural
frequency and damping parameters:

a(t) A
wﬁ(t)=cu2+—m——z (8)

:

where w,(t), 6(t) are the instantaneous undamped natural frequency and log.decrement
of the vibratory system.

Since the mass value is unknown, we first have to estimate the mass eliminating the
natural frequency from the first equation, equation (8)

A[a(1)]

4 —-a)"'+ﬁ '
A

Comparing equations (3) and (8), we can see that in both models of the vibratory system
the instantaneous natural frequency values are virtually equal, because the difference
between them is a second-order negligibly small component. Hence there is a certain
relation between damping parameters

®

hy=wid2nw, O = 2mewhy/w} (10)
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where Ay, 6 is the damping coefficient and log.decrement, w, ¢, is the instantaneous
frequency of the vibration and undamped natural frequency of the system. This shows a
way of making distinctions between a frequency-independent and a frequency-dependent
friction in the system, tested during forced vibration analysis.

If the damping coefficient of a system £, does not vary when we change the frequency
of the forced vibration w, and the decrement § is directly proportional to this forced
frequency, it means that there is some frequency-dependent friction in the system, e.g. a
viscous damping. If the decrement 8 does not vary during forced frequency changing, and
damping coefficient of a system 4 is inversely proportional to this forced frequency w, then
there is some frequency-independent friction in the system, e.g. a dry friction.

Equations (3) and (8) determine modal parameters of a system as instantaneous
functions of time in every point of the process, which makes it possible not only to directly
establish non-linear relations between these instantaneous modal parameters, the vibration
amplitude and the forced frequency and also to use standard statistical processing
procedures, thus obtaining a more precise analysis. For modal parameters estimation we
¢an use either equation (3) or equation (8), as they yield practically the same value of
natural frequency, and both or one of the -damping parameters can be used for a
corresponding type of friction in the system.

4. NON-LINEAR SYSTEM WITH RANDOM EXCITATION

Let us consider a possibility of a linear and a non-linear sdof system identification under
a stationary random input signal excitation. Proposed modal analysis equations, including
the Hilbert transform and linear transformations are also correct in the case of random
input, but their left and right parts of equation (3) have become expressions, which include
random values of system parameters and of signals. As far as natural frequency and
damping coefficient are random functions, defined through some other random functions
(envelope, instantaneous frequency and their derivatives), it is necessary to consider mean
values of the system modal parameters.

The mean values of individual sample instantanecus functions from equation (3), when
computed by a time average, may be represented by

— m_ﬁ(:)/i A 24> Ao

Ni(t) = 2 - - [
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Let us analyse the right side of equation (11) taking Gaussian random processes as input
and output signals on the condition that their instantancous characteristics (envelope,
frequency, phase) are mutually statistically independent [4]. According to equation (1) and
equation (4) real and imaginary parts of input and output signal ratios may be defined by

A1)
A1)

4.(1)
A(r)

a(t) = sin [¢ (1) — ¥ (1))-

cosfp(ry -y (1), B(t)=

Now, since the mean value of the multiplication of independent random functions is equal
to multiplication of their mean values, the last equations can be rewritten as
& =A,cos(p —¢)A and f=A, sin(¢ —¥)/A. Note that the frequency of forced
vibration under a random excitation has symmetric distribution around a resonant
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frequency, and the phase angle of the system ¢ — i = 4¢ changes from 0 to — . Therefore
mean values, as trigonometrical functions, are given by

" sin A¢pd(A¢)=2/n
0

cosdp =n—"! j_ncosd¢d(d¢)=0, sin A¢ =n“j
i)

from which it follows that @ =0, =24, /a4.
Mean values of derivatives of envelope and instantancous frequency of Gaussian
random processes are equal to 0 [4], A =@ = 0. Thus equation (11) simplifies to

@y(4)=@(4), h(4)=A,/nAwy(A)m. (12)

This result means in particular, that the backbone of the system under random excitation
is a regression curve of an envelope and an instantaneous frequency of forced vibration.
For calculation of a damping coefficient we have to average values of envelopes, of a
natural frequency and a mass value.

5. MULTI-DEGREE-OF-FREEDOM SYSTEM WITH ONE INPUT

Forced vibration of a mdof system has an important feature: whenever the frequency
of excitation is close or equal to one of the undamped natural frequencies, this mode shape
is identical to the principal (normal} mode shape of the system. In this case vibration of
the system depends only on parameters of this one particular normal mode and on
excitation. Using a swept frequency excitation in the range of frequency, including several
different natural frequencies of the system, we have conditions where the forced and
natural frequencies are very close to each other or coincide at all. In these conditions input
and output signals can be used for modal parameters estimation of a corresponding normal
mode shape on the base of FORCEVIB procedures. Since the mass of each mode has its
own value, the plot of mass estimation equation (5) will be represented by a broken line,
where each mass value respectively is given by tan of the slope angle of each line segment.
In the case of a mdof system investigation, after calculation of the Hilbert transform and
instantaneous functions of signals, it is necessary to use the procedure [equation (5)] for
mass value estimation for each mode of the system separately.

6. THE RESULTING EQUATION OF THE METHOD FORCEVIB

It is convenient to limit the solution of the system [equation (2)] and retain only one
first quasi-harmonic of the vibration. This assumption means that vibration itself should
be a narrow band process and the instantaneous amplitude and frequency of the vibration
would be slow functions of time. After low frequency filtration of the instantaneous
function the equations for experimental modal analysis equations (3)/(8) become approxi-
mate equations. Owing to filtering, it is now possible to represent modal parameters in their
traditional form, as a backbone. Accuracy of detection of the system moda! parameters
as functions of an envelope and an instantaneous frequency would be higher than less
negiigibly small components of non-linear systems [6]. This accuracy of modal parameter
detection corresponds to the accuracy of well known principal approximate analytical
methods. In this case, for instance, during scanning frequency of input signals we observe
a natural mono-harmonic linearisation of a non-linear system, As a result a higher speed
of sweep frequency makes the backbone plot closer to the trivial vertical line.
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Direct approximate determination of a backbone (relationship between amplitude and
natural frequency), which characterises elastic properties, and a relationship between
amplitude and damping characteristics offers the possibility of efficient non-linear system
testing avoiding long forced response analysis. Resultant equations of the method are
presented in Table 1. The FORCEVIB method uses the vibration signal of system y{z),
excitation signal x(r) and includes the next procedures [7]: the Hilbert transform, time
derivation, algebraic transforms, least square method, low frequency filtration of the
resultant functions, averaging resultant dependencies, involving several individual samples.
A proposed method of studying a vibrated system, based on the Hilbert transform, is
suitable for testing both linear and non-linear systems, excited by impulse, sweep frequency
quasi-harmonic signal, amplitude modulated, bi-harmonic, or random input signal.

7. SIMULATION RESULTS

Let us consider some examples using the FORCEVIB method for the vibratory sdof
system modal parameter investigation.

1. Forced vibration of an elementary linear system. The equation of forced motion of a
linear system is written in the following way: j + 1.2y + (22 10)%y = 400 sin (2n4r%)
where, on the left, we have a system with natural frequency f, = 10 Hz, damping
coefficient 2, =0.6s~', and on the right, force excitation with high speed of sweep
frequency f = 4 Hz/s. Figure 1 shows the force [Fig. 1(a)] and the system time history
[Fig. 1{b)], which in the case of non-stationary ¢xcitation have some pulsations.
Nevertheless the obtained modal parameters of the system tested do not have errors
or distortions in practice [Fig. ¥c), (d)].

TABLE 1
Resultant equations for forced vibration identification

Instantaneous characteristics Equations Dimension
Amplitude A= /y'+j? m
ibrati =
fi -2 _2r H
Forced vibration frequency f 2G5 7
Al(xf = E9)(pf — 3y
Mass value = AE Ji_ ﬁy;E}jy _ij;i Ns¥/m
(viscous damping) Yy —=yy)(py —yy
Allxy + ZP) (¥ + 77
Mass value 2= [([( 2y+ _z)y() U . yﬂ 2])] Ns?/m
(structural damping) Py =y
£ - _ . - e Ay !'Q
Undamped natural frequency fu=051" [(xy d )f T el ¥y ] Hz
{viscous damping) Yy =y
~ o _ a_ oy ”2
Undamped natural frequency f2=0.5z"" [(xy + XP)im = y¥ — ] Hz

(structural damping)

Damping coefficient

Logarithmic decrement

yi+it
(&y — xF)m + 3§ — yy
YWy
_ Gy —xp)m 435 -
Gy + Xp)[m —yy =¥

hy=0.5
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Figure |1, Forced vibration Jinear system identificatiq
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Figure 3. Backbone of the Duffing system under random excitation: *, theoretical backbone.

2. Forced vibration of the non-linear system with a dry friction and a backlash.

J+4 12y +5sign () + (2n10)[y —0.05sign (y —0.059)]=x if|y|>z
¥+ 1.29 +Ssign(p)=x ifly|<z
y0=25 J}()::O

where right-hand side is x(¢) = 300 sin (27 3¢%%). The backbone of the system obtained
after its identification using FORCEVIB procedures virtually coincides with the
theoretical skeleton curve [Fig. 2(c)]. It is a monotonous increasing curve line which
has a trivial vertical line of lincar system as an asymptote on the right and shows a
clearance value on the amplitude axis where the natural frequency comes nearer to
zero. The plot of the dependence of the instantancous damping coefficient and
envelope has some deviations in a small amplitude zone over the very high speed of
sweep frequency, but it has a monotonous decreasing hyperbola form [Fig. 2(d)]
which leads us to the conclusion that in this case Coulomb friction is operated in the
system.

3. A non-linear Duffing system forced by Gaussian white noise j + 20y +
(707 )y (1 +0.2y%) = £(1).
The following instantaneous modal parameters of the system have been computed
and are shown in Fig. 3. The backbone obtained for the regression of the
instantaneous natural frequency and envelope practically coincides with the theoreti-
cal backbone (**,%} [5] of the tested system.
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8. SUMMARY AND CONCLUSION

In conclusion, it can be stated that an interesting and promising experimental method
for identification of non-linearities in stiffness and damping characteristics of a vibration
system has been developed. The method is based on input and output time domain
measurements and on their Hilbert transforms. The method defines instantaneous modal
parameters (backbones, damping dependencies) of a system under a slow or a very fast
swept frequency test, narrow or wide band random excitation.
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