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NON-LINEAR SYSTEM VIBRATION
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FREE VIBRATION ANALYSIS METHOD ‘FREEVIB’
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This study concentrates on techniques for non-linear system investigation, which enable
us to identify instantaneous modal parameters {natural frequencies, damping characteristics
and their dependencies on a vibration amplitude and frequency) in the process of free
vibration analysis and through various kinds of excitation of the dynamic system. Modal
parameters identification is based on input and output signal measurements from the
dynamic system and on signal processing, including the Hilbert transform. Part I presents
the free vibration analysis of the system including the identification technique for the main
characteristics of the non-linear oscillatory systems. For non-linear effects representation,
a sdof system with a hard spring has been considered.

1. INTRODUCTION

An experimental analysis of free vibration with impulse (shock} excitation of the dynamic
system is often used for estimation of modal parameters of mechanical structures [1].
Impulse input signals are suitable for a wide variety of engineering structures, and the test
is very fast and particularly convenient in the laboratory. There are limitations to known
vibration analysis methods: only linear dynamic systems can be tested through frequency
response functions, and low accuracy of the determination of the non-linear dissipation
characteristics are reached by the small number of peak points in the damping process.
There is also a method of free vibration investigation of non-linear systems using the
Hilbert transform [2]. However this method helps only in cases of determination of an
average damping coefficient by taking logarithms. It is of no use for instantaneous
dissipation characteristics determination.

In this paper a new method for studying a dynamic system is proposed based on the
Hilbert transform it is suitable for both linear and non-linear system testing during input
impulse excitation. The method has some advantages and is recommended for instan-
taneous modal parameters identification, including determination of concrete type non-
linear spring and damping characteristics of quasi-linear vibratory systems by free
vibration analysis.

2. THEORETICAL BASES

According to analytic signal theory a large number of processes including vibration of
the system y{r) can be converted by the Hilbert transform to a new function and also
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represented in the form of the combination of slow varying functions, called envelope and
instantaneous phase [3]:

Y()=y(t) +j7(t) = A(t) exp{ (1)}
y(@)=A@cosy(t),  A(t)=/y* )+ 71
Y (+) = arctan [F(¢)/y(1)], (1)

where y(r), §(¢) is vibration and its Hilbert transform (real valued functions), ¥(¢) is
vibration in an analytic signal form (complex time-function), 4{¢), ¥(¢) is an envelope
signal (amplitude) and an instantaneous phase (real valued functions). The function y(¢)
is defined as the Hilbert transform of y(r) [3]:

" 1 1= y(@)
= = =— LA
Hy(0) =30 =— +y() =~ L, o de
The Hilbert transform can be considered to be a filter which simply shifts phases of all
frequency components of its input by —=/2 radians. In order to convert the complex
time-function of the analytic signal to its original function it is necessary to use the
substitution y(t) = (Y () + Y*(#))}/2. The instantaneous angular frequency is the time-
derivative of the instantaneous phase:
yOF(O) - y ) _ Im Y(1)
A¥(r) Y()

We note that the time-derivative of the amplitude is also very important for analytic
signal representation:

o)=Yy =

Lo YOO+ o [T
A@) = Y1 = A(0) Re[m)].
Let us consider free vibration of a quasi-linear sdof system with viscous damping

J +2h(AY + wi(A)y =0 @

where y is a system solution, #,(4)=c(4)/2m are the symmetrical viscous damping
characteristics, w3(4) = k(4)/m is the undamped natural frequency, m is the mass of the
system and k(A) is the symmetric ¢lastic characteristics of the system,

According to the main properties of the Hilbert transform, where h(t) and y(¢) are
signals with non-overlapping spectra [4], where k(1) is lowpass and p(r) is highpass, then
H[A()y ()} = h(OH[ y ()], H(¥) = #, and we can use the Hilbert transform for both sides
of equation (2). Multiplying each side of the obtained new equation by j and adding it to
the corresponding side of equation (2) we get a differential equation for the analytic signal

¥+ 2h,(A)Y + w(A)Y =0 3

where Y is a system solution in the analytic signal form.
Using the analytic signal form equation (1), together with its two first derivatives

Y = Y(OA@/A@ + jo(t)]
Y = Y(0)[A()/A(1) — 0% (1) + 2jA (Do ()] A (1) + jor ()] 4)

to solve the dynamic system equation (3) we get the equation for free vibration analysis

4 A A
Yl:g—a)2+w5+2ho-j+j(2zco+a’i+2izow)]=0 0]

where A4, @ = y-envelope and instantaneous frequency of the vibratory system solution.
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Solving two equations for real and imaginary parts of equation (5), we can write the
expression for instantaneous modal parameters as functions of a first and a second
derivative of the signal envelope and the instantaneous frequency.

A 24 Ao A @
==+ —+ =, = —~-—, 0
Wi =w' =S+ 450 w= -5~ ©)
where w,(¢) is the instantaneous undamped natural frequency of the system, h,(r) is the
instantaneous damping coefficient of the system, «, A is the instantaneous frequency and
envelope (amplitude) of the vibration with their first and second derivatives (0, 4, 4).

By analogy with the differential equation (3} the equation of motion of the system with

structural damping independent of the vibration frequency will be

" 8(A

Y+cu§-(A)[1 +j %]Y =0 )
where 8(A4) is logarithmic vibration decrement.

Substituting the analytic signal form equation (1) and its two first derivatives equation
{4) into the equation of motion equation {7) we get

A 2ndw o
w%(‘)=ﬂ’2—2, Mt):_A_wé_w_ﬁ’ (8)

where w,(t) is the instantaneous undamped natural frequency of the system and 8(¢), is
the instantaneous logarithmic vibration decrement,

A comparison between equations (6) and (8) shows that in both models the instan-
taneous natural undamped frequency is practically equal to the instantaneous free
vibration frequency, because the difference in the case of small damping is of second-order
negligibly small components. These two equations determine the undamped natural
frequency and damping parameters of the system as instantaneous functions of time in
every point of the vibration process. It points out the direct way for establishing non-linear
relations between instantaneous modal parameters and the vibration amplitude and also
for using standard statistical processing procedures, thus making the system modal analysis
more precise.

3. MAIN CHARACTERISTICS OF THE NON-LINEAR OSCILLATORY SYSTEM

The instantaneous damping coefficient can be determined by the form of the symmetric
dissipative function and the vanation of the instantaneous natural frequency in time by
the symmetric elastic restoring forces. In general when investigating non-linear systems the
instantaneous damping coefficient and the natural frequency become functions of the
amplitude. In the particular case of a linear system the instantaneous natural frequency
and the instantaneous damping coefficient or decrement do not vary in time.

Let us consider some typical cases of interactions between the non-linear system
characteristics. In most cases if the system to be tested has non-linear elastic forces, the
natural frequency will depend decisively on the amplitude of vibrations. We present this
departure from synchronism of the vibration in the form of a regression curve of the
instantaneous amplitude on the instantaneous frequency which represents a kind of
skeleton curve (or backbone) of the system under test. Every typical non-linearity in the
spring (Duffing system, backlash or clearance, pretensioned system, bi-linear system,
impact system etc.) has its unique form of skeleton curve. Several possible forms of A {w,)
ar¢ shown in Table 1.
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Analysis of the topography of the skeleton curve is essential for evaluation of the
properties of the particular vibrating system, e.g., through reconstruction of any charac-
teristics of the elastic forces (Table 1). For example, a skeleton curve of the system with
backlash is a monotonic increasing curve which has a trivial vertical line of linear system
as an asymptote on the right side and cuts off a clearance value on the amplitude axis on
the left.

If non-linear dissipative forces are operating in the test system, the values obtained from
the instantancous vibration damping coeflicient may depend on the instantaneous
amplitude (Table 2). Coulomb or dry friction in particular has a plot of damping coefficient
and envelope dependence as a monotonic decreasing hyperbola. Experimental studies of
the vibration of engineering structures indicate that the nature of dissipative forces is such
that the frequency has practically no influence on the value of logarithmic decrement, and
that a model of frequency-independent friction should be used to describe the vibrations.

4. THE RESULTING EQUATION OF THE METHOD ‘FREEVIB’

The proposed method for analysis of the machine vibration offers a way of directly
plotting the system skeleton curve, which includes modal frequency and non-linearity in
spring characteristics, as well as dependencies between damping parameters and the
amplitude, which contains modal damping together with non-linearity in friction. The
method is suitable for efficient oscillatory system testing avoiding time-eating forced
response analysis. Resultant equations for the ‘FREEVIB’ method are presented in
Table 3.

There are two ways of implementation of a free vibration process in the system tested:
either suddenly switch off the exciter during vibration resonant sinusoidal testing, or use
the shock excitation and a narrow band filter to get a response in the area around the
natural frequency. Free vibration analysis means, that we deal only with vibration y(¢)
when the excitation signal has ceased.

Free vibration of a quasi-linear vibratory system is a narrow band process, so it is
possible to ignore the second-order negligible small components in equation (6). The result

TABLE 3
Resultant equations for free vibration identification

Instantaneous characteristics Equations Dimension
Amplitude A= /yi+ 5 m
Free vibration frequency f= Eryj(}yz—_-i-wfﬂ_) Hz

H.o LN
Undamped natural frequency Ja= O-SR“’GM) Hz
(viscous damping) y =Xy
—yi = R\
Undamped natural frequency Jo=05n"" ——3= Hz
(structural damping) yot+y
Damping coefficient By =05 y}i—-“};—)—’ g™
¥y —¥yy
Logarithmic decrement s=n2 I, —

-y~
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Figure 1. Duffing system identification using free vibration,
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becomes

A o
() =w(t), h()= T (1) = 2nhyjw. )]
Equation (9) shows that the natural frequency of the system is practically equal to its
instantaneous frequency while the damping coefficient is assumed to be proportional to
the first power of the velocity of the envelope and the instantaneous frequency.

It is clear now that the average damping coefficient 7 in linear system (&5 = 0), calculated

as integral
T T A(1) A
B=T"'"{ h=T""| ——<t=T"'In—=,
L 0 jo Q) >

is equal to the logarithm of the envelope.

‘FREEVIB’ uses a free vibration signal after narrow band filtration and consists of the
following procedures [6]: the Hilbert transform, time derivative, algebraic transforms, low
frequency filtration of the resultant functions, and averaging resultant dependencies
involving several individuat samples. From the expressions in the Table 3 it follows, that
the instantaneous modal frequency and damping parameters are functions of time and can
be determined at any point of the damped process. The total number of these points which
map the free vibration is much greater than that of the peak points of the process. It opens
the way for establishing non-linear relations between instantaneous functions and for using
statistical processing procedures, making the analysis more precise. To get the best result,
it is useful to filter and average a few free vibration backbones and damping-envelope
dependencies of the system tested.

5. NON-LINEAR DUFFING EQUATION ANALYSIS

As an example, let us consider the free vibration and instantaneous characteristics of
the process in the elementary system with non-linear hard spring
¥ +0.08y +y(14+0.14y) =0, y,=3, y,=0, which were computer calculated for 300
points at (.3-s intervals. The use of digital filtration programs for the Hilbert transform
with less than 1% non-uniformity of frequency characteristics ensured high accuracy of
calculation from the initial process [- — - -, Fig. 1, (a)] the instantaneous amplitude [ 2
Fig. 1, (a)] and the frequency [Fig. 1, (b)]. The system backbone [Fig, 1, (¢)] obtained after
identification and using the above procedures practically coincides with the theoretical
skeleton curve {5} 4 =~ 3(w3— 1)'2.

The plot of the dependence of the instantaneous damping coefficient and envelope
having some small deviations but practically constant value of the damping coefficient
{Fig. 1, (d)] points to the conclusion that in this case we are dealing with viscous linear
damping performing within the system, and that the reconstructed value of the damping
coefficient is equal to the model value (h = 0.04).

6. SUMMARY AND CONCLUSION

As non-linear dissipative and elastic forces have totally different effects on free vibration
(energy dissipation lowers the instantaneous amplitude, while non-linear elasticity links the
instantaneous frequency and amplitude in a certain relationship) it is possible to determine
some aspects of the behaviour of these forces, For this identification we propose that
relationships be constructed between the instantaneous frequency and amplitude plus
curves of the instantaneous decrement as a function of amplitude. The identification
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technique developed here should be of value in many areas of mechanical oscillatory
systems having various features of non-linear behaviour.
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