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ANALOG AND DIGITAL SIGNAL PROCESSING
ADSP - Chapter 9
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Chapter 9  Signal-to-Noise Ration Improvement: 
Basic concepts

Introduction

Preamplifier noise 

Band-pass filtering

Averaging

Correlation – Windowing

Spectral Analysis - Windowing

Problems
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INTRODUCTION

100 kHz 
transmitting US 

transducer

100 kHz 
receiving US 
transducer

xtr(t)

sa
m

pl
e

A-to-D
xd(t)Analog

Preamp.
xamp(t)xin(t)

Sample attenuation: 60 dB

xtr: 5VRMS
xin direct :   5mVRMS
through sample:   5μVRMS
backgroud noise:  1μVRMS

Analog Preamp. Specs:
Voltage gain (Gv):  1000   (60dB) 
Bandwidth (Bw):     1 MHz

A-to-D voltage range:    ± 1 V (14bits)

 ADnoise:  35 μVRMS (not significant in this case)Analog Preamp: LM6142
Equivalent input noise: 16 nVRMS /√Hz 

 16 μVRMS (Bw = 1 MHz)  Usefull signal is apparently lost 
in the noise

Preamp OUT
 5 mVRMS
 1 mVRMS

 16 mVRMS (LM6142 noise)

Example from acoustics:
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PREAMPLIFIER NOISE

Noiseless
Op Amp

en

inn

inp

In a non-inverting voltage preamplifier, the equivalent input noise voltage spectral 
density is determined as follows (R1 << Req): 

eequi = (en
2 + eReq

2+ inp
2 ·Req2)0.5

en: Op Amp Input Noise-Voltage Density - LM6142: 16 nV/√Hz, MAX412:  2.4 nV√Hz
inp: Op Amp Input Noise-Current Density - LM6142: 0.2 pA/√Hz, MAX412:  1.2 pA√Hz

Rp

R1

R2

Op Amp Noise Voltage or Current Spectral Density
An operational amplifier (OP Amp) is characterized by the spectral densities of its noise
voltage (en) and noise current (inn-inp) per root hertz, i.e. V/√Hz or A/√Hz. Spectral densities
are commonly used to specify noise parameters.
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PREAMPLIFIER NOISE (cont’)

Appropriate OPAMP choice and resistor values optimization
 SNR improvement

eReq: Equivalent voltage spectral density of Req

Req : the real part of the source impedance Zs at the frequency of operation in parallel with Rp

Voltage spectral density of typical resistor values (at 3000C): 1 kΩ 4 nV/√kΩ/√Hz 
===> 50Ω 0.9 nV/√Hz, 10 kΩ 12.6 nV/√Hz

Equivalent preamplifier ouput noise of bandwidth Bw:   uoutRMS = Gv · √Bw · eequi

Example:  Gv = 100, Bw = 1 MHz,   LM6142  and RReq = 1 kΩ
Max412 and RReq =  1 kΩ

VRMSLM6142 16 10 9 2 4 10 9 2 0.2 10 12 103 2 100 1 106 1.65 10 3

Max412 VRMS2.4 10 9 2 4 10 9 2 1.2 10 12 103 2 100 1 106 481.66 10 6
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BAND-PASS FILTERING
Noise bandwidth: Bwnoise,  Band-pass filter bandwidth: BwBPF

SNR(dB)out = SNR(dB)in + 10 log [ Bwnoise / BwBPF ]

 In a uniformely distributed noise, its power is proportional to the bandwidth

Example: Bwnoise = 1 MHz, BwBPF = 10 kHz   SNR improvement of 20 dB

 Drawback: Rise-time and fall-time 
inversely proportional to BwBPF

 BwBPF is bounded by
Desired Signal Time Position
Estimation Accuracy
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AVERAGING: Multiple periodic excitation response averaging

1st system excitation responseConcept:

2nd system excitation response

Nth system excitation response

excitation response average

x1(n) = S(n) + N1(n)

x2(n) = S(n) + N2(n)

xN(n) = S(n) + NN(i)

xAver n( )
1
K

1

K

i

xi n( )



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AVERAGING (cont’)
If the noise vectors Ni(n) are independant than it can be shown that:

If the noise is NOT random  Averaging is USELESS!

SNRN(dB) = SNR1(dB) + 10 log10 N
In words: the SNR improvement is
proportional to the number of
repetition N of the system excitation

Aver: 1

Aver: 10

Aver: 100

Aver: 1000
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CORRELATION - WINDOWING
Definition: The correlation between waveforms is a measure of the similarity or
resemblance between the waveforms. The correlation between x(t) and y(t), or more
precisely the average cross-correlation is defined as :

With x(t)  x(n) and y(t)  y(n), their cross-correlation is usually defined as follows:

where K and L define a realistic interval over which RXY(n) is computed.

RXY n( )
1

L K 1
K

L

m

x n( ) y n m( )




Rxy ( ) E x t( ) y t   
t2 t1

1
t2 t1 t1

t2
tx t( ) y t  





dlim

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CROSS-CORRELATION APPLICATION: Time-of-flight (TOF) estimation

Problem: The maximum is NOT reliably determined when the noise gets very strong!

Rxtrxn0()
xtr(t)

xn0(t)                     no noise

xn1(t)

xn2(t)

Rxtrxn1()

Rxtrxn2()

TOF

TOF

TOF?         TOF

TOF???  SNRxn1 – 10dB TOF?
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CORRELATION - WINDOWING
100 kHz transmitting 

US transducer

100 kHz receiving US 

transducer

xtr(t) xNOsample(t)

100 kHz transmitting 

US transducer

100 kHz receiving US 

transducer

xtr(t) sa
m

pl
e

xsample(t)

Refectors

xNOsample(t)

xsample(t)Sample signal
Multiple reflections signal
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CORRELATION – WINDOWING (cont’)

xNOsample(t)  xno(n)

xsample(t)  xs (n)

xWsample(t)  xws (n)Windowed + amplified

XCORR [xno – xs]

0

XCORR [xno – xws] ∆t  sample velocity

∆h  sample attenuation

∆t

∆h
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SPECTRAL ANALYSIS - WINDOWING: Example
0 - chirp – 100 kHz  400 kHz in 400μs
1 - Propagation delay unwanted signal: 350 μs
2 - Propagation delay desired signal: 40 μs
3 - Sample attenuation: 40 dB
5/6- Windowing

40mVpp – Very good windowing

4Vpp – no windowing

Poor windowing

Fair windowing
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SPECTRAL ANALYSIS - WINDOWING: Example (cont’)

Adequate WINDOWING is crucial in spectral analysis

No windowing

Poor windowing

Fair windowing?
Very good windowing!

40 dB

SAMPLE SPECTRUM
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PROBLEMS

Problem 9.2 (p 9.3)

In this example the through sample signal is equal to 5 mVRMS.
 Preamp OUT SNR(dB) ≈ 20 log(5/16) ≈ - 10dB
The 100kHz ultrasound signal rise-time and fall time is approximately equal to 70µs. 
a) How many repetition do you need in order to obtain a SNRProc(dB) = 20dB

 UsampleRMS/UnoiseRMS = 10

b) What improvement do we get if we replace the  LM6142 by a  Max412?
Consider that the effect of un largely dominates the effect of inp. 

Problem 9.1 (p. 9.4)
In a non-inverting voltage preamplifier, the equivalent input noise voltage  spectral density  is 
determined as follows (R1 << Req and Rp >> Rs): 

eequi = (en
2 + eRs

2+ inp
2 ·Rs2)0.5      where  Rs = real[Zs]

You have the choice between two Op Amps: Max412 and LM6142. Which one do you use if:

a)  Rs = 400Ω     b) Rs = 100kΩ      with eRs = 4 nV · (Rs/1000)0.5 /(Hz)0.5 (3000K)



16

Western Switzerland University of Applied Sciences
An

al
og

 a
nd

 D
ig

ita
l S

ig
na

l P
ro

ce
ss

in
g

Chap. 9 Signal-to-Noise Improvement: Basic concepts Prof. J.-P. Sandoz, 2010-2011

Problem 9.3 (Correlation)
Plot and determine the maximum of:

Problem 9.4 (SystemView)
Redo the example of page 9-10 with:  

xtr(t) = 0.01·sin(2π100000 t) · (1-cos(2π10000 t), 0 ≤ t < 100µs

TOF = 250µs

x1(t)

x2(t)

a)   Rx1x1()

b)   Rx2x2()

c)   Rx1x2()

Determine the maximum value of Std.Dev (Gaussian Noise) 
such that TOF (Time-of-Flight) is estimated with an acceptable 
accuracy.


