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ABSTRACT

Therapeutic ultrasound is clinically used to accelerate bone
fracture healing. It alleviates osteoarthritic pain and improves
joint functionality in the form of physiotherapy. The
combination of stem cell engineering and therapeutic
ultrasound has potential to differentiate and stimulate cells in
scaffolds. However, the exact ultrasound mechanism causing
these effects is unclear. In vitro studies form the biological and
physical bases for this technique, and also provide the
environment wherein the engineered cell structures are
exposed. Ultrasound stimulation may not be repeatable in
common in vitro setups that are usually optimized for culturing
and biochemical assays. This results in variation in the exposure,
and may affect the properties of the engineered material. In this
thesis, cartilage and bone cells were sonicated in in vitro systems.
Ultrasound-induced temperature elevation was measured and
the stimulating effect of ultrasound was compared with
temperature elevation alone. In addition, non-invasive acoustic
and optical measurement methods were used to show the
complex nature of in vitro sonications. Results indicated that
ultrasound stimulation, not temperature rise alone, induces
proteoglycan synthesis in primary bovine chondrocytes.
Ultrasound activated Wnt/B-catenin signaling in human
osteoblastic MG-63 cells through both the thermal and non-
thermal routes. Thermocouple and infrared camera
measurements showed that many configurations are likely to
have ultrasound-induced temperature elevations. Ultrasound
standing waves were generated in typical exposure conditions
and were sensitive to setup details. Optical measurements
indicated that guided Lamb waves are generated on the
commercial cell wells. Our results indicate that ultrasound
exposures in common in vitro configurations are complex and
highly variable.
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1 Introduction

In therapeutic ultrasound applications, high frequency sound
waves alleviate pain, stimulate tissue repair, modify cells and
cell constructs, or destroy malignant, diseased tissue.
Ultrasound administration is routinely made from the outside of
the body, non-invasively. Ultrasound can be targeted with high
precision even into deep tissues and is non-ionizing, allowing
repeated treatments through normal healthy tissue.

Several therapeutic ultrasound techniques can be regarded as
tools for regenerative medicine [209] and tissue engineering
[177]. For example in sonoporation, the interaction of ultrasound
and gas bubbles causes the cell permeability to temporarily
increase, enabling transportation of materials, for example,
DNA, into the cells [19,22,83,137,159,295]. Similarly among
patients with leg ulcers, ultrasound treatments have been shown
to accelerate the impaired wound healing [29,69,70].

Specific interest has been focused on traumatized or diseased
bone and cartilage tissues and their biophysical manipulation
using therapeutic ultrasound. In principle, this method is used
in somewhat comparable manner to  mechanical
micromanipulation [104] and other non-invasive methods like
external electric or electromagnetic fields [20,27]. It is often
referred to as low-intensity ultrasound or low-intensity pulsed
ultrasound (LIPUS) when ultrasound is applied in repeated
short bursts. It shares many conventions and settings with
ultrasound physiotherapy, which is routinely used on soft
tissues and cartilage ailments. However, generally in low-
intensity applications the treatment is administered in regular
short intervals (daily) for long times (up to several months)
using average acoustic intensities from tens to few hundreds of
mW/cm? which is less than 1-2 W/cm? that is typically used with
physiotherapy [82,248]. Importantly, the mechanism behind the
favorable tissue effect is thought not to be the ultrasound-
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induced temperature elevation, but primarily some other
(mechanical) ultrasound effect [46,59,65,71,259]. This is often
called a non-thermal effect. Technically it is distinct from shock-
wave lithotripsy therapy, which utilizes extremely high acoustic
pressure pulses of only a few microseconds in length (review of
this topic [336]).

To further develop this technique and to overcome the
limited tissue healing capabilities of bone and cartilage,
ultrasound stimulation methods to enhance stem cell-based
tissue engineering [226,261] have been developed. At its best,
ultrasound could differentiate, stimulate, and maturate bone
and especially cartilage structures in vitro and in vivo.

Ultrasound sonication has been shown to accelerate bone
fracture healing in animal models and in clinical studies. At the
moment, a LIPUS device for the treatment of human fresh bone
fractures and bone non-unions lacking the normal bone healing
capacity is commercially available (Exogen®, Smith & Nephew,
TN/Bioventus LLC, NC, USA). Animal models have suggested
that ultrasound intervention could be used, for example, in
osteoporotic bones and fractures [30,38,191]. In cartilage,
traditional higher-intensity ultrasound stimulation has been
reported to alleviate osteoarthritic pain and improve joint
functionality [274]. In animals, ultrasound has been reported to
repair injured or arthritic cartilage using acoustic intensities
comparable to those produced by the clinical bone-healing
device [49,109,134]. Studies have further indicated that the
combination of stem cell tissue engineering and low-intensity
ultrasound has the potential to differentiate and stimulate cell
constructs [42,53,74]. Unfortunately, despite extensive research
and numerous biological findings, the exact physical ultrasound
mechanism causing these favorable effects is not known
[46,158,207].

A large number of in vitro studies have formed the biological
and also physical bases for the stimulation (see Chapter 3.6).
These studies provide guidance especially for ultrasound tissue
engineering that uses similar in vitro setups to grow and expose
the cells or cell constructs. The common culturing conditions
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and configurations that are optimized for cell welfare and
biochemical assay accuracy allow ultrasound implementation,
but in many cases in a simplified fashion that creates
acoustically complex exposure conditions that may not be
repeatable without demanding calibration measurements. The
lack of adequate calibration measurements may result in
variations during and between the ultrasound exposures that
will affect the biological material properties and quality.

In many studies, the cells are placed close to the transducer
face in the acoustic near field (for example [57,239,252]). This
short distance simplifies the experimental setup in that it allows
the use of acoustic gel to couple the transducer to the cell
chamber instead of using liquid coupling. However, this simple
setup creates an acoustically complex situation: a spatially
varying ultrasound exposure. The acoustic field is further
complicated by the transmission through the cell chamber. The
cell chamber or tube is usually made of a plastic material. Cells
in monolayer or three-dimensional matrix are in direct contact
to this plastic. Before ultrasound can propagate to the cells,
sound waves must travel through the plastic bottom of the
chamber. During the transmission, the reflection and absorption
of the wave at the plastic-liquid interfaces and in the plastic
material, respectively, attenuate the wave. After passing though
the cells, the sound travels inside the chamber in the culture
medium column, which is in most cases only a few millimeters
high. Nearly perfect sound reflection occurs at the medium-air
interface, resulting in reverberations and standing waves
between the air, cell chamber bottom, and transducer face.

The sound absorption in plastics combined with the multiple
reflections makes the in vitro systems very vulnerable to
temperature elevations. Unfortunately, temperature
measurements are not routinely conducted or reported in
studies. As the sound transmits to the cell culture chamber,
wave mode conversion may occur. Therefore, the ultrasound
exposure of the cells may be influenced not only by longitudinal
waves, which are usually considered, but also by shear waves,
and surface waves.
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All these factors complicate the calibration and repeatability
of the exposures. The co-existence of multiple wave modes also
hinders the specification and optimization of effective
ultrasound exposures. However, detailed studies exploring
these phenomena in common in vitro configurations have not
been reported.

The aims of this thesis were (1) to establish and expand the
effectiveness of ultrasound exposures for tissue engineering by
conducting cartilage and bone cell in vitro sonications; (2) to
systematically measure the ultrasound-induced temperature
elevations, show the susceptibility of in vitro configurations to
ultrasound-induced heating, and compare the stimulating effect
of ultrasound and temperature elevation on bone cells; and (3)
to show, using non-invasive measurements, the complex nature
of in vitro ultrasound exposures relevant to tissue regeneration
and engineering.

First, the bovine cartilage cells were exposed to ultrasound or
temperature elevation alone (publication I). After one to five
days of daily exposures, the proteoglycan synthesis levels were
measured and the two exposure methods were compared. In the
second study, human osteoblastic MG-63 cells were exposed to
ultrasound using a setup with minimal temperature elevation
and standing wave formation (publication II). Through a
genome-wide microarray analysis, the genes responsive to
ultrasound stimulation were sorted. Based on the micro-array
observation, in the third study activation of Wnt cell signaling in
MG-63 cells after ultrasound exposure was studied (publication
III). The exposure setup was modified from the previous one
based on the observations from the sonoporation study [160]
and a review of the literature. The sonications were done using
two setups, either including or excluding a thermal component
arising from the wultrasound. In the fourth study, the
temperature elevation distribution after ultrasound exposure
was studied using temperature-dependent Wnt signaling, fine-
wire thermocouple measurements, and non-invasive infrared
imaging (publication IV). Finally, to characterize the in vitro
acoustic exposure conditions, sound transmission, standing
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wave formation, radiation force effect, and wave mode
conversion were studied using pulse-echo ultrasound, non-
invasive laser Doppler vibrometery and acousto-optical
Schlieren measurements (publication V).
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2 Ultrasound Wave
Propagation and Interaction

with Tissue and Tissue
Culture Plates

2.1 ACOUSTIC FIELD

In most therapeutic ultrasound applications, the temporal
duration of the ultrasound wave is long, and the wave is
delivered either as a continuous wave (CW) or as wave bursts
comprising ten or more acoustic cycles. Thus, the delivered
ultrasound may be approximated as narrow-band, nearly
monochromatic longitudinal waves.

The acoustic pressure field from a planar ultrasound source
in a homogenous medium is commonly divided into two
distinct regions. The first is the field close to the transducer. This
acoustic near-field, or Fresnel zone, is governed by diffraction.
For a transducer operating at a fixed frequency, the near-field
has pronounced pressure variation both in the direction of
sound propagation and perpendicular to it (Fig. 2.1). The span
of the near-field depends on the speed of sound in the medium c,
the acoustic frequency f, and the radius of the transducer a. For a
circular plane piston transducer, the near-field can be estimated
to extend to distance ziam = a?/(c/f) = a*/A, where ziam is the
distance from the source to the last axial maximum and A =
acoustic wavelength [60]. A more conservative estimate for the
near-field distance is the Rayleigh distance zr = nziam. For the
plane non-focused transducer, the distance zram is the natural
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focal distance from the source. The half beamwidth is
minimized [244,365] at this distance.

ey ]

0.05 0.1 0.15 0.2 0.25 0.3 0.35 04
Axial, z (m)

Normali

0

Figure 2.1. (Top). Normalized acoustic pressure amplitude distribution for a
planar circular transducer. Normalization is relative to the point (zam, 0).
(Center). Contour plot showing the -3, -6 and -12 dB pressure contours. Contours
are normalized at each axial distance. (Bottom). Normalized axial pressure
distribution when y = 0. (c = 1485 m/s, f=1 MHz, a = 12.5 mm, zram = 105 mm,
radial and axial axes are not in scale).

The last axial maximum can be enhanced by moving it closer to
the transducer, using an acoustic lens or a spherically curved
transducer. The acoustic focus will be located close to the
geometric focus of the curved transducer. By decreasing the
radius of curvature, the diameter and the length of the focus can
be decreased resulting in an increase in pressure amplitude at
the focus for a given source pressure. Focusing can also be
accomplished using acoustic reflectors, or electrical focusing of
phased arrays [142].

The second sound field region after the near-field is the
acoustic far-field (Fraunhofer zone). In this region, the wave
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fronts resemble expanding spherical waves and the spatial
amplitude decreases accordingly in the axial direction (Fig. 2.1).

2.2 SOUND PROPAGATION IN A MEDIUM

During propagation in a medium, the ultrasound wave is
subjected to non-linearity and attenuation. At high acoustic
pressures, the sound wave propagation is distorted. During the
positive acoustic pressure phase of the wave, the propagating
wave and the particle velocity are in the same direction,
resulting in a higher speed of sound. Where there is negative
pressure, the particle velocity opposes that of the propagating
wave, resulting in a lower speed of sound. Thus the
compressional part of wave catches up to the rarefactional part.
This is known as the convective nonlinearity. If the material
stiffness is higher (lower) at the compressional (rarefactional)
locations, this results in a higher (lower) speed of sound and a
larger distribution of speeds within the pressure wave. This
effect is known as the material nonlinearity. The non-linear
phase of the speed of sound, cg for the propagating pulse can
now be defined as cg=c + (1 + B/2A)u = ¢ + ffu, where u = particle
velocity amplitude and g = 1 + B/2A is the nonlinearity
parameter for the medium [180]. Nonlinearity causes distortion
of the pressure wave shape, resulting in the buildup of higher
harmonic frequencies (2f, 3f, 4f, ...) in the acoustic waveform as
the distance from the source increases.

The sound wave is attenuated due to the absorption in the
medium, scattering from the particles in the medium, and
reflection from the acoustic interfaces. If the intensity of the
incident wave is lo, then for the wave propagation path length z,
the intensity can be written as [ = le?* where o is the
amplitude attenuation coefficient (cm) that includes the effects
of both absorption and scattering. The absorbed component of
the wave energy is dissipated to the medium. Neglecting the
thermal conduction, the rate of temperature rise due to the
absorption can be estimated as dT/dt =2al/(pCp), where Cy is the
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specific heat capacity (J/kgK) [142]. Sound that is scattered or
reflected by particles in the medium will change its direction of
propagation, resulting in increased attenuation of the beam. The
ultrasound attenuation in soft tissues and trabecular bone
increases approximately linearly with frequency up to 2 MHz
[105,346].

In materials with low viscosity, such as liquids, the sound
absorption causes bulk medium movement known as acoustic
streaming. This flow of fluid is due to the Rayleigh radiation
pressure within the medium. A simplified equation describing
the flow velocity is v = (20d/cV)d*Q, where v is kinematic
viscosity, d is beam diameter, and Q is a system-specific
geometric factor. Medical transducers are capable of generating
streaming with velocities of several centimeters per second
when operated in liquids [304,305].

If the exposed medium contains small gas bubbles or the
negative pressure amplitude is high enough to extract gas from
the tissue to form bubbles, the bubbles may act as nuclei for
acoustic cavitation [180]. The likelihood for cavitation processes
increases with increasing negative pressure and with decreasing
frequency [8,16]. Acoustic cavitation is generally divided into
two different categories: non-inertial (stable) and inertial
(transient) cavitation. In non-inertial cavitation, the gaseous
inclusion oscillates in the acoustic field [180]. The amplitude and
phase of the bubble oscillation depends on its size in respect to
the resonant bubble size at the acoustic frequency. For
approximately resonant size bubbles, the velocities of bubble
motion and forcing pressure field are in-phase and the
amplitude of the bubble motion is significantly increased.
Depending on the size of the bubbles with respect to the
resonance size, the bubbles may attract or repel each other
through a radiation force between the bubbles known as the
secondary Bjerknes force. When the acoustic pressure is elevated,
the bubble oscillation becomes nonlinear. The nonlinearly
oscillating bubbles sends sound at the harmonics,
ultraharmonics (3f/2, 5//2, 7f/2, ...) , and subharmonics (f/2, f/3,
f/4, ...) of the acoustic frequency [234]. If the acoustic amplitude
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is sufficiently high, the bubbles may grow due to rectified
diffusion [79]. In rectified diffusion, during the rarefactional
phase, the bubble in liquid expands. The gas concentration
inside the bubble is therefore lowered resulting in a diffusion of
gas into the bubble. The opposite happens during the
compressional part of the wave. However, the bubble surface
area which is available for this flow is larger for the expanded
bubble. Thus the net flow of gas during one acoustic cycle is
higher into the bubble than from out of it. In addition, the liquid
shell around the bubble becomes thinner and thicker during the
expansion and contraction phases, respectively. Thus, the
gradient of the gas concentration is higher during the
expansion-phase resulting in higher gas diffusion into the
bubble compared to gas outflow during the contraction-phase.
As a result of these effects, the time-average size of the bubble
increases.

During bubble growth and oscillation, the bubbles may
create local perturbations in the liquid medium resulting in
small-scale fluid streams at the periphery of the bubbles. This
phenomenon is known as microstreaming [78]. If the amplitude
of the pressure source is further elevated and the bubble growth
further increased, during the contraction of the bubbles, the
inertia of the surrounding medium may become so large that the
increasing gas pressure in the bubbles is not able to arrest the
compression, resulting in a violent and rapid bubble collapse
[84]. The cavitation process that leads to bubble collapse is
known as inertial cavitation. During the collapse, the
microscopic temperature elevation and pressure rise may be
several thousand Kelvins and hundreds of MPas, respectively
[84]. Neighboring interfaces may be punctured and eroded due
to the high-speed liquid jets, and the formation of chemical free-
radicals is possible [64,216]. A suitable bubble size is one of the
most important pre-requisites for inertial cavitation. For air
bubbles in water, the resonance size for the bubbles can be
estimated using Minnaert resonance frequency fu =
1/(21wR0)(3YPo/p)*2, in which Ro is the mean bubble radius (m), y
is the polytropic coefficient (1.4 for air), and Po is the ambient
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pressure [180]. This can be approximated as fuRo = 3.3 m/s.
Artificial gas bubbles of approximately resonant size and having
high echogenity can be administered to achieve and amplify
cavitation [331].

When an acoustic wave meets an acoustic interface, part of
the wave is reflected (Fig. 2.2). Assuming plane waves, real
acoustic impedances (density p multiplied with c¢) and an
interface having dimensions much larger than the wavelength,
the incidence angle-dependent coefficient for pressure reflection
is [161]

R Z,cos6, —Z,cosb,
Z,c080, +Z,cosb,’

(2-1)

where Zi2 are the acoustic impedances in media 1 and 2,
respectively, and & and & are the incident and transmission
angles, respectively.

The coefficient for transmitted pressure at the boundary can
be formulated as

_ 27, cos0,
Z,cos6, + Z,cos6,

(2-2)

For the transmitted wave intensity and power, the reflected part
is Ri= R? and the transmitted part is

47,7, cos, cos b,
" (Z,c080,+Z,cosb,)’ (2-3)
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0, Reflected shear wave (S)

Longitudinal wave (L) Reflected L
elL erL
Interface/surface wave
Medium 1, c, (L and S)
Medium 2, ¢,>c,
Gﬂ.
6 Transmitted L
5
Transmitted S

Figure 2.2. Longitudinal wave reflection and refractive transmission between
media 1 and 2. The speed of sound c in medium 1 is lower than the speed of
sound in medium 2. L = longitudinal wave, S = shear wave, = angle respect
to the normal of the interface, i = incident, r = refracted, and t = transmitted.
Modified from [271].

These equations do not take into account the frequency
dependency of the transmission in the case of wavelength-scale
objects or the generation of shear and surface waves in solids
through acoustic wave mode conversion [26,271].

When the reflected wave encounters the incident wave, a
standing wave pattern is created [161]. If the incident wave has
pressure amplitude of po = 1, the amplitude for this summed
incident and reflected wave having an amplitude R can be
written

p=[1+R)* cos?(k,2)+ (1 - R)* sin? (k,2)}, (2-4)
where ki = 2r/4; is the wave number in medium 1. In a special

case of reflection from water-air interface (Z2<< Zi, R = -1), the
resulting standing wave pressure can be written as

p=2sin(k,z), (2-5)
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which has the maximum amplitudes, or antinodes, atp=2 at z =
-nA/4 (n =1, 3,5, ...) relative to the reflecting surface at z = 0.
Respective pressure minima, or nodes, are at the positions z = -
nA/2 (n =0, 1, 2, 3, ...). Standing wave patterns have distinct
pressure antinodes or nodes in z = 4/2 intervals. When a
standing wave is established in a fluid containing particles or
gas bubbles, they are affected by a substantial radiation force
known as the primary Bjerknes force [180]. This force separates
the particles into the pressure antinode or node positions
depending on the particle size and the operating frequency.
This force is capable of moving and holding cells or cell-size
particles inside the blood vessels or in chambers, establishing
spatial ~ patterns that replicate the standing wave
[47,68,94,95,170].

A steady force originating from the attenuation of the
propagating wave on absorbers or reflectors in the beam path
due to the transfer of wave momentum is known as Langevin
radiation force [307,326,350]. In case of when the sound beam
hits a perfect sound absorber, the force on the absorber is F =
W/c, where W is the acoustic power (W). For targets having
absorption ¢, the generated force is F = 2ad/c, where I = Ita= the
time-average intensity and F is a force per unit volume [237].
For a perfect sound reflector, the force is doubled F = 2W/c. Both
the absorption and the scattering contribute to the generated
force when the target deviates from a perfect absorber or
reflector.

2.3 WAVE MODE CONVERSION

When a longitudinal wave propagates through a medium
interface, its energy is distributed into longitudinal, shear and
surface waves (Fig. 2.2). In fluids such as water, the incident and
reflected waves can only be longitudinal, as shear waves are not
supported in fluids. The longitudinal speed of sound c, and the
shear speed of sound cs in solids can be calculated using the
equations ¢ = [(K+4/3G)/p]"? and cs = (G/p)'”?, respectively.
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Parameters K and G are the bulk and shear modules,
respectively. In hard solids, the shear speed is approximately
half of the longitudinal speed of sound, reducing both the
wavelength and acoustic impedance. The reflection and
refraction angles can be calculated using Snell’s law, cisin(&) =
c2sin(@). When c1 < ¢z, the first critical angle is defined as &1 =
sin(ci/c2). Ideally at this angle, the longitudinal wave reflects at
angle @ and is converted to surface or interface waves in
medium 2. Shear waves continue to propagate in medium 2 at
angle @s. The second critical angle is defined as an incident
angle that results in a 90° shear refraction angle &2 = sin(ci/czs).
Above this second critical angle, only surface or interface waves
can propagate in medium 2 [271]. Compared to longitudinal
wave attenuation, the reported values indicate that shear wave
attenuation is approximately twice as high in cortical bovine
bone (70 Np/m/MHz vs. 130 Np/m/MHz) [355] and significantly
higher in several commercial plastics (approximately 24-64
Np/m/MHz vs. 250-300 Np/m/MHz) [356]. In soft tissues
including bovine muscle, the shear attenuation is roughly three
to four orders of magnitude higher than the longitudinal
attenuation (3-10 Np/m/MHz) [105,142,200].

In addition to mode conversion to shear waves, induction of
interface and surface waves is also possible. Several types of
acoustic surface waves can propagate along solid isotropic
materials. These include Rayleigh surface waves along a free
semi-infinite solid interface, Stoneley interface waves along a
semi-infinite solid—solid interface, Scholte interface waves along
a semi-infinite solid-liquid interface, and Lamb waves along a
solid free plate [271]. In a liquid immersed solid, the wave may
become leaky, in other words, energy is radiated to the
surrounding liquid. Leaky Rayleigh waves having speed cr can
propagate if the bulk shear speed cs of the solid is nearly equal
to or larger than the longitudinal speed of sound c in the
surrounding liquid [223], thus limiting their presence in hard
solids. Rayleigh speed is generally slightly less than cs. In the
case of a soft solid-liquid interface (cs < c), for example, polymers
in water, Scholte waves propagate so that almost all the energy
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of the wave is in the solid, resulting in propagation that is
sensitive to the properties of the solid [102].

Lamb waves are a result of coupled longitudinal and shear
waves, and both symmetric (S) and antisymmetric (A) Lamb
wave modes can propagate in free (air) or liquid-immersed
plates (Fig. 2.3). Symmetry is defined by the particle
displacements with respect to the center of the plate. The Lamb
wave excited plate shows both in-plane and out-of-plane
particle displacements. For a free plate having a thickness of 25,
the Rayleigh-Lamb wave dispersion equations can be written as
[271]

(2-6)

where exponents +1 and -1 are for the symmetric and
antisymmetric Lamb wave modes, respectively. The actual
dispersive Lamb velocity is under the terms s> = (@/c)? - k? and ¢?
= (@Jcs)? — k2. Here k = 2af/cp, in which cr is the Lamb wave phase
velocity. Several symmetric and antisymmetric modes having
different speeds and particle displacement shapes (in-plane and
out-of-plane movement) can propagate on the same plate.
Starting from the frequency-plate thickness product fd = 0, the
velocity of the zero-order modes cr approaches cr from cr < cr
(AQ) or cr > cr (S0) as the fd increases. The higher-order modes fd
> 0 approach the shear speed cs from cr > cs. The fluid loading of
a plate has been shown to affect the propagation of Lamb waves
especially when cs and ¢, and the densities of the plate and
liquid are of the same order, respectively [86,270]. Low-
frequency guided Lamb waves have been observed through
pulse-echo ultrasound in pulsing human heart walls [154], as
well as in externally vibrated pig myocardium, spleen phantoms
and in vivo pig heart [232,233,333]. Lamb waves have been
generated in long bones in vivo [235] and in bone phantoms
[58,263] using ultrasound excitation.
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Figure 2.3. Illustration of symmetric (top) and antisymmetric (bottom) guided
Lamb waves propagating in 2h thick plate. The arrows indicate the particle
displacements at the plate. Modified from [271].
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3 Therapeutic Ultrasound in
Bone and Cartilage

3.1 BONE

Bone is a complex connective tissue that has several important
functions in the body [52]. Bones form a structure to which the
muscles can attach; they protect the internal organs in the body;
they serve as mineral storage; and they are the location for blood
cell production. Bone matrix consists mostly of inorganic
(hydroxyapatite, 65% of bone mass) and organic (mostly type I
collagen) material. Other organic components include proteins
such as bone sialoprotein, fibronectin, osteocalcin, osteonectin,
osteopontin, enzymes (collagenase, alkaline phosphatase; ALP),
growth factors (transforming growth factor-B; TGF-B), and
cytokines (prostaglandin Ez; PGEz, interleukins; IL-1, IL-6).

Bone has two main structural parts. The outer periosteum-
covered dense part of the bone is the compact bone. It has
concentric ring-like structures known as osteons. In osteons,
layers of concentric bone lamellae surround canal-like structures
known as Haversian canals. The blood vessels and nerves go
inside these canals. Under the compact bone, the structure is
highly porous and is called trabecular bone. Trabecular bone
forms the medullar cavity which contains the bone marrow.
Bone marrow is the source for blood cell production and the
location of multipotent stromal (stem) cells that can differentiate
to, for example, bone or cartilage cells.

Several different cells are present in bone [52].
Osteoprogenitor (stem) cells are located at the bone periousteum
and differentiate to osteoblasts. Osteoblasts, the bone forming
cells, are found on the surfaces of the bones. Fully matured
osteoblasts transform to osteocytes which are numerously
present inside the bone matrix (within lamellae). Osteocytes,
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which are connected to each other by tiny canal-like structures
(canaliculi), are assumed to play an important role in sensing
mechanical perturbations. Osteoclasts are specialized cells
which can resorb bone tissue to its basic elements so it can be re-
used by the osteoblasts to form new bone. Bone tissue has high
capability to regenerate and repair. Normal bone growth
(modeling) and bone structure maintenance (remodeling) are
both a balanced action and interaction of osteoblasts and
osteoclasts. Osteoblasts and osteoclasts create the functional unit
of bone known as the basic multicellular unit.

A fractured bone can heal either through direct
intramembranous (primary) healing or through indirect
(secondary) healing [205]. In direct fracture healing, the fracture
gap between the bone ends is filled with bone by the osteoclasts
and the osteoblasts, and then remodeled into final lamellar bone.
Direct healing is rare without external intervention and requires
that the fracture ends are nearly in contact (separation <1 mm).
In addition, the fracture ends must be rigidly fixed, thus
eliminating any movement. Therefore, the more common type
of fracture healing is indirect healing which can fill larger gaps.
Indirect healing also benefits from small mechanical
perturbations of the fracture. It encompasses both
intramembranous healing and endochondral healing in which
cartilage tissue is temporarily constructed and then remodeled
into bone tissue.

Indirect healing consists of several different phases [205]. The
inflammatory phase occurs immediately after the trauma,
creating a haematoma which consist of the cells from blood
circulation and bone marrow around the fracture. The
haematoma coagulates and creates a loose support around the
fracture. During this phase, inflammatory cells such as
macrophages secrete tumor necrosis factor-oo (TNF-o) and
interleukins (IL-1B, IL-6 etc.). Vascular endothelial growth
factors which activate the angiogenesis are also induced. Acute
inflammatory reaction is highest on the first day and is resolved
by one week. In the next phase, granular fibrous tissue, which is
formed around the fracture, is transformed into cartilage

20 Dissertations in Forestry and Natural Sciences No 172



through endochondral ossification. First, the mesenchymal stem
cells from the surrounding tissue, bone marrow, and possibly
systemically from the peripheral circulation, are recruited. The
cells are then differentiated to osteogenic cells. This process is
orchestrated specifically by bone morphogenetic proteins, such
as BMP-2 and BMP-7 and TGF-B proteins. At the end of this
process, the fracture is surrounded and supported with hyaline
cartilage which expresses high levels of extracellular matrix
protein type II collagen and proteoglycans. This structure is
known as the soft fracture callus. Simultaneously,
intramembraneous ossification generates a hard woven bone
callus around the fracture further increasing its rigidity. The
cartilaginous appearance peaks around 7 to 9 days post-fracture.
Revascularization takes place in the callus. The chondrocytes
become hypertrophic, generating calcified mineralized matrix in
the callus. This calcified matrix is then resorbed into woven
bone through the activation of several proteins such as receptor
activator for nuclear factor kappa B ligand (RANKL),
osteoprotegerin, and TNF-o. The process of cartilage resorption
and hard fracture callus formation peaks at 14 days post-
fracture, and shows callus mineralization and presence of type I
collagen, osteocalcin, ALP, and osteonectin. The calcified callus
is finally transformed into woven bone. In the final stage of
fracture healing, the woven bone is remodeled into lamellar
bone. This process starts 3 to 4 weeks after trauma and may last
for several years.

3.1.1 Wnt/B-catenin signaling in bone

Cellular signaling within single cells and between cells directs
the fundamental cellular processes, such as cell development,
differentiation, and apoptosis. Specific interest, in the case of
bone cell development, has been directed to canonical Wnt/B-
catenin which is one of the secreted proteins in the family of
Wnt proteins mediating cellular signaling [24]. Wnt/B-catenin
signaling has been shown to be activated at different stages of
fracture healing [290]. Its induction has been shown to accelerate
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fracture healing, while inhibition of this signaling has been
shown to induce delayed fracture healing [290].

In Wnt/B-catenin signaling, the Wnt protein binds to the
receptors in the plasma membrane of the cell. This initiates an
intracellular signaling event in which the phosphorylation of -
catenin protein by glycogen synthase kinase GSK-3f is
inhibited, and B-catenin is stabilized. B-catenin levels then rise in
the cell cytoplasm and B-catenin is translocated into the cell
nucleus. Inside the cell nucleus, it binds to lymphoid-enhancer
binding factor (LEF-1) and T-cell transcription factor (TCF). This
complex starts then to regulate gene expressions.

3.2 CARTILAGE

Cartilage is a flexible connective tissue found in the ears, nose,
skeleton, intravertebral discs, and joints. The types of cartilage
found from human body include elastic cartilage, fibrocartilage,
and hyaline cartilage.

Articular, hyaline-like cartilage covers the bones at the
synovial joints [52,121]. It provides low-friction joint movement
and equalizes forces concentrated at the end of the bones. It is
nutritioned (mostly) and lubricated by the synovial fluid from
the synovial membrane. Articular cartilage is mainly composed
of chondrocytes (cartilage cells), collagen fibers (types I, IX, and
XI) which form the extracellular matrix, proteoglycans, and
water (75-80% of tissue). Proteoglycans consist of
glycosaminoglycans (specifically chondroitin-4 and 6-sulfates)
connected to a specific protein core. Aggregating proteoglycans
bind to hyaluronan chains in a regular pattern. Aggrecan is a
specific proteoglycan in cartilage. Proteoglycans are trapped to
the extracellular matrix by collagen fibers in complex manner.
Negatively charged proteoglycans assist in regulating the water
content of the cartilage and in ion binding. Articular cartilage
can be divided to four different zones, which from the top to
bottom are the superficial or tangential zone, the transitional
zone, the deep or radial zone, and the calcified zone above the
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subchondral bone. The calcified zone and noncalcified deep
zone are separated by a thin undulating layer, termed the
tidemark. The calcified zone and tidemark restrict the passage
of substances from the subchondral bone into the upper
cartilage layers [14].

Articular cartilage is a specialized, avascular, and aneural
tissue having very limited healing capacity in cases of injury or
deteriorating metabolic disease. Osteoarthritis is the most
common joint disease, which slowly but progressively
deteriorates the cartilage and underlying bone. Osteoarthritis is
characterized by increased proliferative and metabolic
chondrocyte activity, by the presence of inflammatory cytokines
(interleukins, TNF-o) and collagen-digesting enzymes know as
matrix  metalloproteinases  (e.g. MMP-13), by the
dedifferentiation of chondrocytes to fibroblastic cells, and in the
final stage, by the formation of osteochondral nodules known as
osteophytes on the surface of degenerated cartilage [281].

3.3 CELL-BASED TISSUE ENGINEERING FOR BONE AND
CARTILAGE

The principle in tissue engineering is to use methods of biology,
chemistry, and physics to replace, repair, and regenerate the
tissue and organs in body [177,226]. This can be accomplished
using cell, tissue or organ transplants, or by replacing the
degenerated tissue with prostheses. In cell-based tissue
engineering, cells or specifically stem cells and progenitor cells
which have the capability to differentiate into several cell types
such as bone and cartilage are harvested, for example, from the
cartilage, bone marrow or fat [226]. The cells can be further
cultured in vitro to advance the cell differentiation and to
increase the cell proliferation. The grown cell mass can then be
transplanted into the target of treatment for further growth and
maturation. The cells can impregnate porous artificial three-
dimensional structures known as cell matrices or scaffolds.
These structures are engineered to advance tissue growth into it

Dissertations in Forestry and Natural Sciences No 172 23



J.J. Leskinen: Ultrasound Stimulation of Bone and Cartilage

(osteoconductive/chondroconductive structure). It serves as
structural support for the cells enabling extracellular matrix
binding, vascularization and fluid flow between the cells.
During cell culturing or post-transplantation, the cells can be
stimulated to induce cell growth and differentiation using
osteoinductive/chondroinductive methods, such as chemical
agents (BMP’s, growth factors) or external physical stimulants
such as ultrasound exposures.

3.4 STIMULATION OF IN VIVO BONE

It is estimated that approximately 5% to 10% of the 7.9 million
bone fractures occurring annually in the United States suffer
from impaired healing [204]. Bone healing can be regarded as
normal if healing occurs within three to six months after the
fracturing incident. The fracture is defined as a delayed union if
it is not united approximately six months after the incident. If
the healing has not ended within nine months after the incident
and has not shown signs of healing for three consecutive
months, the fracture is classified as non-union [236,255]. Several
methods have been developed to accelerate bone healing,
including ultrasound [75,204].

A set of animal studies was conducted in the 1950s to study
the therapeutic effect of ultrasound on bone [9,23,55,201,225]. A
few years later, Ardan et al. summarized many of these earlier
observations and argued that despite all the studies reported,
and evidence of some stimulatory effects on bone or bone
fracture healing, the results were still inconclusive [10]. In this
same study, the authors sonicated dogs having artificial bone
defects. Three continuous wave (CW) ultrasound exposures (f =
0.8 MHz) of five minutes in length were delivered, each
separated by five minutes of cooling. The spatial-average
temporal-average intensity (Isata) was 0.5 to 2.5 W/cm?
corresponding to temporal-average acoustic powers (Pra) of 5 to
25 W. The exposures were reported to be either ineffective (at 5
W) or deleterious, causing bone necrosis, fractures, and delayed
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bone healing (at 10, 15, 20, and 25 W). The measured maximum
temperature elevation in the bone was 31.7°C. Based on current
knowledge [283,320,327], this clearly demonstrates that the
exposures were causing thermal damage, thus negating any
potential beneficial effect. Therefore, it is not a surprise that at
the time therapeutic ultrasound was seen to have limited
potential to stimulate bone healing. A more extensive review of
the early days of therapeutic ultrasound on bone can be found
from Schortinghuis et al. [286].

In later studies, thermal effects were mitigated through the
use of low-intensity CW or pulsed sonications, and positive
impacts on fracture healing were reported. The exposure
conditions for these studies are detailed in Table 3.1. In 1983,
Duarte [59] reported accelerated callus formation and fracture
healing in rabbit fibula and femur after pulsed low-power
ultrasound exposure. The sonications were executed with short
bursts (5 us) and low (0.5%) duty cycle (dc), and the two tested
operating frequencies were equally effective. The measured
temperature rise in the bone was only 0.01°C. In that same year,
Dyson and Brookes [71] sonicated rat fibula fractures in
different stages of healing. The study suggested that ultrasound
was the most effective during the inflammatory phase and soft
callus formation. This typically translates to treatment given
during the first two weeks after the fracture. When the
treatment was given only during the hard callus formation stage
(weeks three and four), bone healing was impaired and
accelerated cartilage formation was observed. Sonications at 1.5
MHz were reported to be more efficient than at 3 MHz (78.6% vs.
56.2% improvement in repair). Acceleration in fracture healing
in rabbit legs (17% acceleration, 168 days vs. 203 days) was
reported by Klug et al. using low intensity CW sonications [162].
A few years later, Pilla et al. reported 1.7-fold (17 days vs. 28
days) acceleration in rabbit fracture healing (ultimate bone
strength) after low-intensity pulsed ultrasound treatments [257-
259]. A temperature rise of 0.1°C was measured from the
osteotomy site. In the study by Wang et al.,, 0.5 MHz and 1.5
MHz operating frequencies were compared in rat femoral
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fracture models [338]. The authors reported that pulsed
ultrasound treatment with average intensity, Isata = 30 mW/cm?,
significantly increased (22%) the average maximum torque of
the fractures measured 21 days after the operation. Both of the
tested operating frequencies were equally effective. However,
the stiffness of the fracture site was statistically increased (67%)
only at 1.5 MHz. Two years later this same group, using a
similar fracture model and ultrasound configuration, reported
that at 0.5 MHz statistically significantly increases in the
fractures” maximum torque (30%) and maximum stiffness (37%)
[357] could be achieved at an intensity of Isara = 50 mW/cm?2. A
higher 100 mW/cm?intensity also elevated these parameters, but
not in a statistically significant fashion (p > 0.2). Furthermore,
aggrecan gene expression in ultrasound-stimulated (50 mW/cm?)
fracture calluses was higher than in the non-sonicated calluses
seven days after the operation (during the ultrasound treatment
period), while it was lower several days after ultrasound
treatment had stopped. The authors suggested that the
mechanism for improved fracture healing was the acceleration
of chondrogenesis and cartilage hypertrophy, resulting in
accelerated endochondral ossification.

In 1994, after a decade of studies, the United States Food and
Drug Administration approved a clinical device (Exogen®) for
the treatment of fresh fractures (treatment initiated within seven
days post-fracture) in skeletally mature individuals. In 2000, the
device was approved for use with nonunion fractures, excluding
skull and vertebrae. The battery-powered and patient-operated
device uses the same acoustic parameters that were first
introduced by Xavier and Duarte (as cited by [257]) and more
generally applied by Pilla et al. [257-259]. The current device has
a circular planar transducer with an effective radiating area of
3.88 cm? and a beam non-uniformity ratio of four [300]. The
transducer is directly coupled to skin using acoustic coupling
gel, resulting in near-field exposure of the soft tissue-covered
bone. The device is generally assumed to have a minimal
thermal effect on tissues due to the moderate operating
frequency (1.5 MHz), diagnostic level average intensity (Isata =
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30 mW/cm? with 1 kHz PRF and 20% duty cycle, 20 minutes
daily), and low temperatures measured in in vivo animals [259]
for a similar device.

Several clinical studies have applied this device. Heckman et
al. reported 38% acceleration (96 days vs. 154 days) in healing of
human tibial cortical fresh fractures [123]. Kristiansen et al.
reported similar results in human radial cancellous bone
fractures [172]. Accelerated healing has been reported also in
other bone trauma treatments techniques [62,103,246]. However,
sonication has also been reported to be ineffective with fresh
fixed tibial fractures [81] and stress fractures [273].

In the case of delayed unions and nonunions, a retrospective
analysis of ultrasound-treated patients implied that low-
intensity ultrasound could result in up to a 91% success rate for
delayed unions and an 86% success rate for nonunions [211]. A
recent study from Schofer et al. was the first randomized sham-
controlled trial dealing with delayed unions and showed a 34%
increase in fractured tibial bone mineral density after LIPUS
[285].

Further animal studies have provided detailed information
about the effects of sonications and have tested new applications
for ultrasound bone therapy. The Exogen® device and the
acoustic parameters it uses have been studied the most.
However, a wide variety of other exposure parameters have
been explored as well in numerous studies. The animal and in
vivo human studies are summarized in Tables 3-1 and 3-2,
respectively in chronological, alphabetical order.

Many of the animal studies have provided the foundation for
ultrasound-assisted bone healing. The results of these studies
have further encouraged the use of this technique for the
treatment of various bone diseases and deficiencies and several
clinical studies support the use of low-intensity ultrasound
intervention for bone fractures. Though the ultrasound-induced
fracture-healing acceleration in fresh fractures is significant,
perhaps the largest potential for this intervention would be to
treat impaired, diseased, or artificially engineered bones.
However, recent systematic reviews of human trials concluded
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that the evidence is still inadequate and that larger blinded trials,
focusing on functional outcomes, that would verify the general
efficiency of this fracture treatment modality are needed [28,107].
In Finland, the medical experts have given similar

recommendations [3].
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Ultrasound Stimulation of Bone and Cartilage

J.J. Leskinen
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3.5 STIMULATION OF IN VIVO CARTILAGE

Osteoarthritis is the most common joint disease, which slowly
but progressively deteriorates the cartilage and underlying bone
[11]. The most common osteoarthritic joint is the knee, and it is
estimated that in Finland, the age-adjusted prevalence of knee
osteoarthritis in individuals over 30 years of age is
approximately 5% in men and 7% in women [2]. Its prevalence
increases rapidly with age, being 9.2% and 8.1% for men and
women near the age of retirement (55-64 years), respectively.
Similar statistics have been reported internationally [11]. Several
surgical and tissue engineering-based methods are developed to
repair articular cartilage defects [210].

Several animal studies have reported favorable ultrasonic
effects on cartilage [49,50,53,65—
67,76,109,133,134,227,251,334,366].  Ultrasound  bone-healing
studies have also noted changes in cartilage and chondrocytes.
Dyson et al. found an increase in elastic cartilage in rabbit ears
using a novel tissue regeneration device [65-67]. The optimal
settings induced a 32.5% increase in tissue growth area and
were achieved using 3.5 MHz pulsed ultrasound. Continuous
wave sonication (Isata = 0.1 W/cm?) was nearly equally as
effective as this pulsed ultrasound mode. However, sonication
using this same temporal-average intensity but higher pulse
intensity (increased intensity, decreased PRF and dc) was
regeneratively ineffective or even inhibitory. All intensities gave
a similar temperature rise (1.3 to 1.6 °C). Following their studies,
many animal studies were conducted demonstrating benefits
from sonications, particularly on osteoarthritic cartilage. These
studies are summarized in Table 3-3. However, in a study by
Chow et al., growth and activity in a cartilage cell pellet that was
placed to treat a physeal bone fracture was not enhanced after
the daily sonications [43]. Further, the results from studies that
maturate and grow tissue-engineered chondrocyte constructs in
vivo have been conflicting [53,61]. This may be explained by the
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differences in biological setups and ultrasonic exposure. In a
study by Lyon et al. [198], the efficacy of therapeutic ultrasound
(1 MHz, unspecified intensity 0.5 W/cm? pulsed but not
specified, 20 min daily for six weeks) and of higher-intensity
ultrasound (2.2 W/cm?) was compared by sonicating the normal
cartilaginous growth plate in rabbit knee. The therapeutic level
was ineffective. Contrary to this, the higher-intensity
experiment showed significant cartilage thickening in the
different zones of growth plate even though disorganization of
the chondrocytes and bone resorption were also evident. This
suggests a difference in effective sonication parameters between
cartilage and bone.

Based on the success in the animal experiments, conventional
soft-tissue ultrasound physiotherapy (several watts of acoustic
power) was used in effort to alleviate the symptoms of
osteoarthritis [82]. Based on the acoustic parameters, these
exposures are expected to induce at least thermal effects on the
innervated subchondral bone, tendons, and cartilage. Recently,
human trials have indicated both pain alleviation and functional
improvements after CW sonications (1 MHz, 1-2 W/cm?
intensity not specified, transducer diameter 4-5 cm, five- to ten-
minutes-long treatments repeated daily 10 to 24 times) [248,319].
Tascioglu et al. further reported that pulsed ultrasound (1 MHz,
2 W/cm?, PRF not mentioned, dc = 20%) was more therapeutic
than CW with 2 W/em? [319]. In a study by Huang et al., pulsed
ultrasound (1 MHz, spatial-peak temporal-peak intensity Iserr =
2.5 W/cm?, PRF most likely 100 Hz, dc = 25%, five-minutes-long
treatments to several locations, three times/week for eight weeks)
combined with muscular exercise increased the functional knee
parameters more than CW ultrasound (Iserr = 1.5 W/cm?) with
exercise or exercise alone [135]. The intensity level was adjusted
based on the level at which the patients felt warmth or a mild
sting. These corresponding temporal-average intensity levels
were lower with pulsed ultrasound than CW.

Ultrasound’s  superior effectiveness over the other
physiotherapeutic modalities, such as heat packs or exercise, has
not been confirmed in all studies [32,82,330]. Recent reviews
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have concluded that there are supportive data on pain and
function improvement after the ultrasound intervention but also
that the current evidence behind therapeutic ultrasound on knee
osteoarthritis is inadequate, requiring controlled
methodologically improved studies [192,274]. Recently, the
authors of this latter review conducted a double-blinded, sham-
controlled, randomized pilot study utilizing pulsed ultrasound
(1 MHz, Isata = 0.2 W/cm?, PRF not mentioned, dc = 20%, 9.5
minutes three times/week for eight weeks), and reported a
statistically significant increase (1700+160 um vs. 1640+170 pum,
mean increase 90 um) in tibial cartilage thickness but found no
effect on pain or physical function among patients suffering
from mild or moderate knee osteoarthritis [193].

In general, soft tissue and bone encases the cartilage in the
joint and therefore, allows only a limited window for ultrasound
to directly propagate into cartilage surface [351]. Planar
transducer devices designed for muscle tissue, tendon, or bone
healing may not be the optimal configurations to deposit a
moderate or low average intensity ultrasound, specifically in
cartilage-space. An efficient deposition may require altered
sonication parameters, beam steering, beam focusing, and image
guidance and/or active control.
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3.6 STIMULATION OF IN VITRO BONE AND CARTILAGE

In vitro studies have provided the biological basis for bone and
cartilage stimulations. Studies using bone and stem cells have
reported elevated levels of collagen, alkaline phosphatase,
osteocalcin, and several other bone-specific markers indicating
that ultrasound has an enhancing effect on bone cell function
and differentiation. More specifically, studies have indicated
that ultrasound can influence prostaglandin E: and
cycloaxygenase-2 levels [165,277,309,310], elevate the levels of
nitric oxide [268,337], affect several cytokines [57,337], regulate
the cell surface integrins [315,316,360], and activate matrix
metalloproteinase’s [39,332]. The effect of ultrasound on cell
proliferation has been conflicting. Table 3-4 summarizes
reported findings. In cartilage and chondrocyte studies,
sonications have been reported to stimulate chondrogenic
activity, maintain and enhance chondrogenic phenotype, and
enhance the differentiation of stem cells to chondrocytes. Parvizi
et al. have shown that calcium ion influx inside the cells
contributes to proteoglycan synthesis and also that presence and
release of intracellular Ca?* is required for an increased synthesis
in the sonicated chondrocyte monolayer [252]. Mortimer and
Dyson, using fibroblastic cells, were the first to report elevated
Ca?* levels in cells after ultrasound [222]. In mammalian ovary
cells, Kumon et al. have shown that signals emanating from the
immediately sonoporated cells may activate the adjacent cells
for delayed additive Ca?* influxes through so-called “calcium
waves”  [173,174].  Elevated glycosaminoglycan levels
[131,220,250] and cell surface integrin activation [41,42,130] have
been reported after the sonications. Table 3-5 summarizes the
reported effects on the cartilage cells and cell structures.

Tissue engineering uses chemical and physical stimulations
to grow tissues [206]. A recent study that compared ultrasound
to a rotating-type bioreactor suggests that ultrasound by itself
could serve as a bioreactor [131], or ultrasound could be
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implemented as a part in a larger, more complex bioreactor
system. Kang et al. [155] have tested a system that combines
cyclic strain and LIPUS on 3D pre-osteoblast scaffolds. The in
vitro data can provide information about the optimal sonication
parameters, optimal sonication setups, and co-play with the
other stimulants for tissue-engineering systems.
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4 Ultrasound Exposures: In
Vitro Bone and Cartilage
Studies

4.1 ULTRASOUND INTERACTIONS

As introduced in Chapter 2, ultrasound can affect cells and
tissue via various thermal and mechanical, non-thermal
mechanisms. Mechanical interactions include radiation force
through sound absorption or reflection, acoustic cavitation,
acoustic streaming, standing-wave induced radiation forces, and
microstreaming. Additional interactions include mode-
converted waves, in the case of acoustic discontinuities;
electromagnetic effects, in the case of electrically active targets;
and the presence of electromagnetic interference. These
interactions are dependent on the amplitude, frequency, and
geometry of the acoustic beam and physical properties of the
target tissue. In this section, specific effects induced by the
various mechanisms are reviewed.

4.1.1 Temperature elevation

One of the physical changes associated with ultrasound
exposure is temperature elevation. Elevated temperature
resulting from ultrasound exposure has been extensively
studied, especially in the case of fetal diagnostic ultrasound due
to possible adverse teratogenic effects [1,4]. Ultrasound-induced
hyperthermia, alone or in combination with other therapies, is
an efficient method to generate cell-destructive responses [56].
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Based on current knowledge, it has been stated that in vivo
temperature elevations less than or equal to 2°C above body
temperature, for up to 50 hours, are safe in postnatal subjects
[243].

It has been known for a long time that small temperature
changes (1-2°C) can alter the human fibroblast collagenase
enzyme activity in vitro [349]. Moderate temperature elevation
and resulting heat stress have also been reported to cause
beneficial effects on various cell types [249]. Studies have
indicated beneficial responses of bone and cartilage cells after
mild heat exposure. Transient exposure to mild hyperthermia
has been reported to induce cyclin D1 synthesis in fibroblasts
(39-43°C for 40 minutes) [110], enhance differentiation of bone
marrow stromal cells and human osteoblastic MG-63 cells (39—
41°C for 60 minutes) [298], and enhance differentiation of
human mesenchymal stem cells to osteoblasts (41-42.5°C for 60
minutes) [241]. In chondrocytes or chondrocyte-like cells, mild
(39—41°C for 15 or 30 minutes) hyperthermia has been reported
to improve cell viability and proteoglycan synthesis [128], while
higher level (48°C for 10 minutes) [362] hyperthermia has been
reported to impair these. Culture media conditioned by heat-
shocked (42°C for 60 minutes) human fetal osteoblasts induced
osteogenesis of rabbit bone marrow-derived mesenchymal
stromal cells [361]. Thermal stress conditioning (four or eight
minutes at 44°C) of pre-osteoblastic cells prior to the
administration of osteoinductive growth factors has been
reported to stimulate several bone-specific markers and up-
regulate vascular endothelial growth factor protein levels [44].

In a recent study utilizing human mesenchymal stem cells,
the cells were seeded inside a 3D cell matrix and placed inside a
heated (41°C) cell culture incubator for one hour once a week,
for up to four weeks [35]. These heated-air hyperthermia
treatments were found to both accelerate stem cell
differentiation towards bone cells, and also to enhance the
maturation of these cells to bone cells.

It is believed that heat shock factors and heat shock proteins
(HSP) have an important role in these effects [249]. These
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proteins are formed when the cells are subjected to stresses,
including heat, and protect the cells from protein unfolding.
There are also indications that HSPs serve as thermosensitive
markers on the cell membrane and take part in increased plasma
membrane fluidity. The HSPs that seem to be activated without
protein denaturation are considered possible therapeutic targets
[301]. In the study by Huang et al., the calming and repairing
effect of repeated wultrasound exposures on early-stage
osteoarthritic rat cartilage was linked to elevated levels of stress
protein after the treatment [134]. Proteins aided the viable
chondrocytes to survive resulting in chondrocyte proliferation
at the follow-up period, and which was deduced to improve the
condition of arthritic cartilage.

In the case of in vitro sonications, ultrasound wave energy is
absorbed mostly in the cell culture vessel structures, which are
normally made of plastic materials (usually polystyrene or
polypropylene). On a microscopic level, cells or collagen-rich
tissue samples may also absorb the sound and contribute to
elevated temperatures.

4.1.2 Radiation force-based momentum transfer and motion

Direct evidence of a radiation force-induced bioeffect came
from a study by Mihran et al. [215]. In the study, relatively short
(500 ps) high-intensity (100-800 W/cm?) ultrasound (2, 4, and 7
MHz) bursts were focused on excised frog sciatic nerve placed
in an in vitro exposure chamber. The single bursts were
observed to either temporally enhance or suppress the nerve
action potentials. Similar effects were seen using a direct
mechanical stimulus having comparable duration and
amplitude. Displacement amplitudes may be estimated to be on
the order of micrometers [237]. The nerve bulk heating was
estimated to be insignificant. The exposure was more effective at
higher operating frequencies (given constant energy and burst
length). The bioeffect was frequency-independent when the
results were calculated as a function of energy attenuated in the
target at each frequency. A 2 MHz electrical RF pre-stimulus
had no effect. Thus, it was suggested that the bioeffect on nerve
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action potentials is due to the radiation force acting on stretch-
sensitive ion channels of the nerve membrane.

In the LIPUS treatments, a dynamic force is created at the
PRF, which is conventionally 100 Hz or 1 kHz. The amplitude of
the particle motion for Exogen® LIPUS parameters is on the
order of a nanometer (particle velocity 1-1.2 pm/s) in the edges
of bone fractures and approximately four-times larger in
tissue/fluid space between the fracture ends [106]. The values
were measured in a fractured cadaveric human forearm using a
laser vibrometer (fractured arm between the transducer and
vibrometer). In a recent review, radiation force was suggested as
the likely mechanism behind bone fracture healing [46].

There is a relatively limited amount of data that directly
compares the different pulse parameters in tissue regeneration.
In an early study of Dyson et al., CW sonications and pulsed
sonications at 100 Hz were compared (Ira constant) [65]. Both
modes were found to regenerate rabbit ear tissue, while pulsed
sonications were marginally more effective. In other in vivo
studies [59,259], the pulsed mode was chosen and applied, as it
is less likely to cause heating or cavitation compared to CW.

In vitro studies of Wiltink et al. [352], Hsu et al. [131], and Hsu
et al. [132] have used pulsed and CW modes and reported that
pulsed (PRF = 100 Hz) sonications are more effective in
stimulating bone-length growth, increasing chondrocyte
number, and forming higher mineralized bone matrix and
denser mineralized nodules in neonatal rat calvarial tissue,
respectively. Argadine et al. have shown that 20% duty cycle 1
kHz sonic square waves that were generated using acoustic
speakers resulted in similar chondrocyte stimulation as the
Exogen® signal [12]. The authors further reported that the
amplitude of the motion was 4 nm for both devices, in a near-
field setup. This strongly suggests that radiation force is one of
the cell stimulating mechanisms. As noted by Marvel et al. [208],
the current commercial systems are not flexible enough to vary
and compare the different pulsing parameters. In his study,
three different PRF frequencies at a constant 20% duty cycle
were compared using a custom-made ultrasound device and
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stem cells in a near-field configuration. The authors reported
that a PRF of 1 kHz was more effective than 100 Hz or 1 Hz.

4.1.3 Cavitation

A myriad of studies have shown ultrasound cavitation-induced
bioeffects. Extensive reviews of bioeffects, setups, and
parameters affecting inertial cavitational effects can be found
from Miller et al. [217]. Apfel and Holland, and recently Bader
and Holland, have created models to estimate the thresholds for
cavitation [8,16]. The threshold for inertial cavitation in the
presence of free bubbles is given by mechanical index (MI), that
is defined: MI = p-/f//2 where p- is the peak rarefactional pressure
in MPa and f, the frequency in MHz. The cavitation index (Icav)
for stable cavitation (bubble rupture and subharmonic emissions)
in the presence of contrast agents, is defined as: Icav =p./f.

As indicated by Miller et al., (inertial) cavitation is a highly
variable effect, affected by many parameters [217]. Sacks et al.
have found that cells in spheroids are more tolerant to
cavitational effects than cells in a monolayer [276]. In blood,
tonicity and dissolved gas contents have been found to affect
blood cell hemolysis [218,219]. Sonoporation of mammalian cells
is more efficient at body temperature than at room temperature
[159,364]. Temperature elevation (from 37 up to 45°C) has been
found to induce cell-type dependent variations in sonoporation
efficiency in cells exposed to high-pressure laser-induced stress
waves [322].

Forbes et al. have shown that inertial cavitation is not
required to sonoporate ovary cells in presence of gas bubbles
[85]. Sonoporation is assumed to be due to the stable, linear
and/or nonlinear bubble oscillations that result in
microstreaming. Krasovitsky et al. have suggested a cell model
that could explain many of the ultrasound bioeffects at low
pressures, and in the absence of contrast agents [171]. In this
bilayer sonophore model, the space between cell membranes
expands and contracts in phase with the ultrasound wave
generating small-amplitude motion inside the cells.
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Evidence that cavitation has a role in therapeutic activity can
be found from studies of Webster ef al. [347,348]. Fibroblastic cell
suspensions were sonicated with or without elevated ambient
overpressure. Artificial bubbles were not used. When the
pressure of the cell chamber was at normal ambient pressure,
the protein synthesis of treated cells was 127.2% compared to
sham-sonicated cells (100%). When the ambient pressure was
elevated by 2 atm, the syntheses were 109.7% and 111.8% for the
sonicated and sham-sonicated cells, respectively, relative to
control cells at normal ambient pressure. Wang et al. have found
an increase in silica-coated 8 nm nanoparticle intake by
osteosarcoma cells after the Exogen® treatment [339]. The intake
increased when the sonication time was extended (3 h>1h> 0.5
h). Harle et al. measured the presence of subharmonic noise
during the bone cell exposures using a hydrophone as a passive
cavitation detector [116]. Their data indicated that the
subharmonic emissions (f/2 = 1.5 MHz) were present only at the
highest intensity level (3 MHz, Isara = 1.78 W/cm? CW). The
highest therapeutic effects were also evident at this level.
However, the gene expressions were also elevated with lower
intensities, which excluded the subharmonic emissions,
indicating that cavitation above the detection of sub-harmonic
signals is not the sole cause for stimulation.

Though ultrasound contrast agents are not used in studies of
this field, the presence of natural air bubbles in the culture
medium is likely, as the medium is not routinely degassed
before sonications. In the study by Zhang et al., water inside an
acoustic waveguide as well as the medium covering the bone
cells were both degassed before exposing osteoblastic cells to
low PRF (0.5 Hz) high-pressure bursts (f = 3.3 MHz, burst
duration = 300 ms, p- = 9.18 MPa) using a novel optical
microscope setup [367]. Degassing may have been one
important factor in this experiment that enabled a stimulatory
effect on cells without inducing cell death, despite the
substantially high negative pressure and long burst duration.
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4.1.4 Standing waves

The two commonly applied temporal sonication modes in
LIPUS studies are PRF = 100 Hz at 1 MHz operating frequency
and PRF =1 kHz at 1.5 MHz operating frequency, with both
using a constant 20% duty cycle. These result in temporal burst
lengths of 2 ms and 200 us, respectively. In water these
correspond to single-burst spatial lengths of 3 m and 0.3 m,
respectively. In a standard six-well cell plate (area = 9.62 cm?)
one milliliter of medium volume equals approximately 1 mm
medium column height. Therefore, in the majority of the in vitro
configurations (Tables 3-4 and 3-5), the sonication is effectively a
near-field CW sonication.

Kinoshita and Hynynen [160] conducted a controlled in vitro
sonoporation using several experiments in which the standing
wave was either induced or eliminated. The study indicated that
ultrasound standing waves are required for high cell
sonoporation efficiency with cells in monolayer. In earlier work,
the cell viability in a cell monolayer seeded in a commercial
polystyrene flask was regulated by placing the cells in either
nodal or antinodal positions [256]. Thus, standing wave
formation may be used to improve the sonoporation efficiency.
In two recent papers from Garvin et al., spatial controlling of
cells using standing waves has been applied for the purpose of
tissue engineering [94,95]. In this method, cells in a suspension
are collected and organized inside an extracellular matrix using
standing waves. The cells are collected to the node positions due
to the standing wave—generated radiation force on the cells. This
matrix is then cured while maintaining the generated 3D
structure. These continuous wave sonications are conducted
using a configuration that is optimized for standing waves but
resembles the setups that are routinely used in in vitro cell
stimulations. Culture medium column height (5 mm) and
acoustic pressure levels (100 kPa) are comparable to many
LIPUS studies.
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4.1.5 Streaming

Evidence of the non-thermal effects of ultrasound can been
found in in vitro studies that combine non-lethal ultrasound
treatment and hyperthermic temperature, and result in
increased cell death compared to hyperthermia alone [185,321].
Dunn [63] found similar cell survival curves as ter Haar et al.
[321] when the cells were exposed to combined elevated
temperature and shear stresses (0.7 to 8 dyn/cm?). Thus, bulk
acoustic streaming was suggested as a non-thermal mechanism.
Dyson et al. [66] suggested that the non-thermal mechanism
behind tissue regeneration of in vivo rabbit ears was cycle-
averaged fluid movement. Harle ef al. [116] have found elevated
transforming growth factor gene levels in osteoblastic MG-63
cells using a far-field configuration. The acoustic streaming
ranged from 4 mm/s to 194 mm/s when Isata ranged from 130
mW/cm? to 1770 mW/cm? (3 MHz, CW). The gene inductions,
which were observed with all intensities, were suggested to be
due to the acoustic streaming. In a study by McCormick et al.,
bone cells were first exposed to Exogen® LIPUS-treatment and
then to a physiological level (19 dyn/cm?) shear stress in a near-
field setup [214]. The ultrasound treatment had an insignificant
effect on bone markers (bone morphogenetic factor-4), cell
morphology, or cell alignment. Shear stress was found to
elongate the cells, change their orientation, and decrease the
level of bone marker. However, when the shear stress was
applied after LIPUS treatments, further decrease in bone marker
level was observed.

4.1.6 Wave mode conversion

Mode conversion of longitudinal ultrasound waves to shear or
surface waves occurs when the original wave meets an acoustic
boundary. Several studies have shown that Lamb-type waves
propagate at the surface of bone. Lamb waves have been
generated in long bones in vivo [235] and in bone phantoms
[58,263] using broadband ultrasound excitation. Propagation
properties of these waves are studied as a diagnostic means to
quantify bone status. In a recent study by Chung et al., which
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applied the Exogen® system, the authors sonicated fractured
bones of living rats at different angles of incident [45]. Fresh
fracture healing and bone mechanical properties were
significantly accelerated when the sonications were conducted
at an angle of 35° instead of at the routinely applied normal
angle of incidence (0°). The authors concluded that this angle
(midpoint of &ri = 22° and é&wre = 48°) enabled optimal shear
wave induction and transmission to bone. In vitro, observations
from Hensel et al. [124] indicate that mode conversion at the cell
culture well walls occurs when the transducer diameter is larger
than the well diameter. As a result, the generated shear waves
sum up at the center of the well, creating a local pressure peak.

4.1.7 Electrical perturbations

The work of Duarte [59], which forms the experimental
framework for the LIPUS techniques in bone, suggests that the
primary mechanism behind fracture healing is the direct
piezoelectricity of bone (collagen) [89]. He theorized that
ultrasound waves induce, through piezoelectricity, small electric
voltages in the bone that stimulate the bone cells. Dry bone
exhibits clear piezoelectricity but the electrical properties of wet
(in vivo) bone and cartilage, which lacks the similar-patterned
collagen structure of bone, have been under debate [5]. It is
suggested that the bone electricity, or strain, generated
potentials could be a combination of fluid streaming potentials
and piezoelectricity [5]. Pilla has observed that ultrasound
induces altered ionic permeability in bone cells [257]. The bone
cell impedance was found to be altered after an ultrasound
exposure comparable to that of the Exogen® system. He has
suggested that the microstreaming of ionic fluids could result in
streaming potentials inside the bone structures and in cells,
creating an endogenous electric field [260]. This could explain
the similarities among the bioeffects and temporal wave
characteristics of ultrasound and electric/electromagnetic
treatments (=mT magnetic flux bursts consisting of high
frequency content repeated at tens or hundreds of Hz).
However, few studies have actually compared electromagnetic
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and LIPUS stimulations [25,189]. These in vitro studies have
indicated a fairly similar response in bone cells, though the
electrical methods have required much longer (2-3 h) exposure
times.

Several commercial plastic materials can generate measurable
voltages under elongation or bending, including polystyrene
and polypropylene [93]. In a method called acoustically
stimulated electromagnetic (ASEM) response, an
electromagnetic signal is generated on a sample that is probed
with short broadband ultrasound pulses and picked up by an
external RF-antenna [144,245]. Small signals have been received
from wet bone and a thin polystyrene plate. Substantially
stronger (= x250) electric signals are found when the probed
sample is a piezoelectric crystal. In a silicon plate the signal is
absent. Studies further indicate that the strongest
electromagnetic pulses are generated when the transducer is
switched on, or when the reflection of the sound from the
sample returns to the sonicating transducer, indicating
transducer generated electrical signals. The impact of these
transducer generated electrical signals were investigated by
Dyson et al. [65], who commented that the electromagnetic
interference  significantly = complicated the temperature
measurements during CW in vivo tissue regeneration. In the
study by Pilla et al. possible effect on bone fractures of electric
noise from the transducer at Exogen® parameters was directly
explored [258]. By replacing the acoustic gel coupling layer with
an air layer, the acceleration of rabbit fracture healing was lost.
This indicates that ultrasound needs to enter tissue to have an
effect, and that the electromagnetic signal alone does not have a
noticeable impact on healing. As suggested by Dyson et al. [65],
the possibility of RF pick-up could be eliminated by using RF-
shielding of the transducer and driving electronics [314].
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4.2 IN VITRO EXPOSURE CONFIGURATIONS

Among the in wvitro studies, the wultrasound exposure
configurations have varied substantially, as indicated in Tables
3-4 and 3-5. To simplify the overview of these setups, the
applied ultrasound systems are categorized into four
generalized types (Fig. 4.1). Similar classification can be found in
the review by Miller et al. [217] and in the study by Hensel et al.

[124].

ERNEE | E—

__lid

air | | air

Figure 4.1. A schematic illustration representing four different ultrasound
exposure systems applied in vitro: (a) immersed transducer and sample, (b)
immersed transducer with absorption chamber, (c) transducer in the sample
volume, and (d) sample on top of the transducer.

air

4.2.1 Immersed transducer and sample

In the first experimental setup (Fig. 4.1A), the cell chamber
containing the biological sample and the transducer are both
immersed in water. This type of setup with cells in suspension
was used in studies [222,347,348], which inspired many later
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ultrasound in vitro studies in this field. This setup has many
favorable aspects. First, the transducer-sample distance can be
set so that cells are exposed in a uniform and repeatable acoustic
field. Second, to exclude standing waves, the cell chamber faces
can be made acoustically transparent using thin plastic films.
After passing the sample volume, the transmitted sound can be
effectively silenced by simply covering the water tank walls
with rubber mats or specialized acoustic absorbers. Due to the
lack of strongly reflecting interfaces, these setups have the
lowest radiation force momentum change and motion. Third,
full immersion enables accurate temperature control and
efficient removal of ultrasound-induced heat from the chamber.
Therefore, the reported temperature elevations have been less
than 1°C [115,187,222,342].

A similar design was later used by Wiltink et al. [352] with
rat bones, Warden et al. [342] with a bone cell monolayer
adhered to a 19 um thick Mylar sheet window, and Sun et al.
[309,310] with rat bones and bone cells placed inside a urethane
chamber.

Cells in commercial cell chambers have also been exposed
using this setup. Harle et al. [114-116] have used polystyrene cell
bottles without modifications and Mukai et al. [224] used plastic
cell tubes containing the cell aggregate at the conical tip of this
tube. The latter system consisted of six transducers and six tubes
placed 3 cm from the transducers.

Though having several advantages, this type of setup has
been used in only a few studies. There may be several reasons
for this. First, a cell chamber that is completely or nearly
completely immersed has an elevated risk for cell contamination
during exposure. Second, the configuration requires larger
culture medium and reagent volumes than normal culturing,
making it costly. Third, to enable optimal sound transmission,
the cell chamber must be modified by making acoustic windows.
Finally, the acoustic window may not be an optimal surface for
cell adhesion.

Repeatable acoustic exposures are also possible by using
special sound absorption chambers (Fig. 4.1B). By placing the
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chamber directly into the culture volume, the standing waves
within the exposure volume can be significantly reduced
[175,187-189]. As with type A setups, studies using absorption
chambers have reported low temperature elevations after
ultrasound treatments. In the setup, a liquid-filled chamber
containing small absorption particles is coupled to culture
medium using a thin film window. The transducer positioned in
far-field is rotated to increase the exposure area and eliminate
standing waves between the transducer and plate. Solid,
silicone-based chambers, for example, have also been
introduced [18,145,146,148,163,165]. This setup type shares
many advantages and disadvantages with the immersion-type
systems (Fig. 4.1A).

4.2.2 Transducer in the sample volume

Perhaps the most intuitive way to sonicate the cells would be to
immerse the transducer directly into the liquid sample volume
(Fig. 4.1C). This technique also minimizes transmission losses
between the transducer and cells. Therefore, it is no surprise
that transducer immersion has been used in multiple studies
(Tables 3-4 and 3-5; ‘C”). For example, a UK research group has
used this approach in several studies [57,199,266-268]. The
studies have experimented with MHz- and kHz-range
ultrasound exposures. The transducer immersion into the cell
chamber is a common feature among the studies, but several
differences are also evident. For example, in the kHz-range
studies, the well plates floated on the surface of temperature-
regulated water. In some studies, the cell chambers are exposed
to air [6,122]. In the other the transmitted sound has been
absorbed in castor oil-embedded absorbers [132,265], absorbers
placed under the chamber [190,368,369], or reflected from the air
under the well [242,315].

This sonication method is simple but it requires careful
transducer sterilization before immersion. To eliminate the
direct cell volume contact, Zhang et al. [368,369] have applied
Parafilm membranes between the medium and transducer.
Standing wave regulation is also challenging. A sub-wavelength
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thick plastic membrane placed between the transducer and
radiation force balance has been shown to cause errors in
acoustic power measurements in general [21], and a shift in the
resonance frequency [196] and acoustic output of physiotherapy
transducers [212]. Therefore, standing waves present in a setup
can directly regulate the sound amplitude that is delivered to
the target. In addition, the absolute calibration of these
configurations is highly demanding and in most cases has been
inadequate. The in-situ calibrations using invasive hydrophones
are susceptible to standing wave artifacts [140,167], which
further complicates near-field calibrations.

One significant obstacle is that in the case of large
transducers [266] or small chambers, the complete transducer
surface may be difficult to place in full liquid contact. In the case
of a geometrically focusing (large aperture) transducer, a special
waveguide [367] or high liquid layer above the plate is required.
Some type of waveguide is also usually required to expose the
sample to a spatially uniform acoustic far-field. In type C
configurations, the temperature elevations have been found to
be small, at least at lower acoustic intensities [132,242,265]. This
configuration is, however, susceptible to heating due to the
multiple reflections between the transducer surface and culture
well bottom. A transducer that has a diameter comparable to the
well diameter can also effectively block cooling from the free
liquid surface. A specific low-frequency and low-intensity
device (45 kHz and 25 mW/cm?) has been reported to generate
substantial heating [203]. In this case, the source for heating may
not be direct ultrasound absorption in the cell culture but the
transducer surface heating [166,354].

4.2.3 Sample on top of the transducer

During routine use of the Exogen® fracture treatment system,
the transducer is coupled to the skin using acoustic coupling gel.
In many ways, the in vitro exposure configuration illustrated in
Fig. 4.1D is similar to the in vivo setup. This is also the most
frequently applied in vitro ultrasound configuration (Tables 3-4
and 3-5; ‘D), especially in recent studies. In some studies, a thin
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water layer has been used to couple the transducer to the cell
chamber bottom [118,252,360], but in the vast majority of the
studies, the transducer and the well have been coupled using an
acoustic gel layer. In a recent study by Fung et al., rubber-gel
blocks (c = 1400 m/s, otherwise unspecified) were placed
between the transducer and the cell well with an acoustic gel
layer between the transducer-rubber complex and the well [92].
In these experiments, the length of rubber block was varied
from zero to 130 mm, which corresponded to the farfield
distance for their system. The intensity of the exposure was
calibrated so that it was constant (Isata = 30 mW/cm?) at the
location of the cell well regardless of the rubber thickness. This
study found the highest bone cell-stimulating efficiency when
the well was in the transducer farfield.

This setup type is perhaps the most vulnerable to heating due
to sound reflections, small culture medium volumes, and a
limited cooling capacity. Few studies have reported insignificant
culture medium temperature elevations with respect to the
control cells in a setup using gel coupling [292,332]. Park et al.,
using the Exogen® device, have commented that with culture
wells smaller than the transducer, the temperature was elevated
above the physiological level, which increased the level of
glycosaminoglycan staining of cell constructs mimicking an
osteoarthritic tissue [250].

The most complex radiation force movement is generated in
these setups. Commercial well plates have substantial acoustic
attenuation, resulting in direct vibrations of the adhered cells at
the burst repetition frequency. A large liquid movement is
generated at the acoustically soft liquid-air interface. Reflections
and the resulting standing wave fields within the exposure
volume can further modify the radiation force and induced
motion [21]. Hensel et al. [124] have reported that in a type D
setup, a medium volume variation of 2.56% (total volume 13 ml)
can change the pressure at the cell layer by a factor of two.

The type D setup, having a low culture medium column with
standing waves, may form favorable -circumstances for
cavitation by enabling the bubbles to be close to the cells.
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Kodama et al. transfected reporter genes in hamster cells using
near-field standing wave sonications with gas bubbles (1 MHz,
p- = 0.23 MPa, PRF = 100 Hz, dc = 20%) [164]. The highest
luciferase activity and the lowest survival fraction were
observed when the culture medium height was 1 to 2 mm,
which correlated well with the wavelength of 1.5 mm.

Though acoustic streaming varies substantially in the
acoustic near-field, it is concentrated to the transducer focal area
[305]. Direct measurements from Spengler et al. [303] indicate
that acoustic streaming can be attenuated if the free liquid
volume is limited by using acoustically transparent films.
Successful cell manipulation using standing waves further
indicates that standing wave-generated microstreaming may
dominate over bulk acoustic streaming in these setups (also in
type C). Consequently, there may be a large variation in acoustic
streaming values among experiments, depending on the
acoustic parameters and the setup details.

Though the acoustic exposure is difficult to calibrate in this
configuration due to the potential for various sound interactions
(Fig. 4.2), it is simple, rapid to adopt in routine cell culturing
protocols, and presents perhaps the lowest cell contamination
risk.
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5 Summary of the
Publications

The main results of publications I to V are summarized in this
chapter. The applied Materials and Methods can be found in the
original publications.

Publication I. The efficacy of ultrasound (setup type A, f=1 MHz, dc = 20%,
PRF =1 kHz, Isata = 580 mW/cm?, 10 minutes daily for 1-5 days) to increase
proteoglycan synthesis in bovine primary chondrocyte monolayer was
studied. The contribution of ultrasound-induced temperature elevation (mean
+SD =6.9 £ 0.1 °C) to the synthesis was investigated using a water bath to heat
the monolayer by the same amount, but in the absence of ultrasound.
Proteoglycan synthesis was increased approximately twofold after three to
four daily ultrasound exposures, staying at that level until day five.
Temperature elevation alone did not increase proteoglycan synthesis.
Ultrasound treatment did not induce Hsp70, while heating alone caused a
slight heat stress response. The cells from one donor out of five were non-

responsive to ultrasound.

Publication II. Human osteoblastic MG-63 cells were sonicated (f = 1.035 MHz,
dc = 20%, PRF = 1 kHz, 30 minutes) using setup type B. The temperature
elevations were 0.05, 0.18, and 0.72°C at acoustic pressures of 128, 256, and 510
kPa, respectively. Using genome-wide microarray screening, altogether 377
genes were found to be ultrasound-regulated at least by twofold. Ultrasound
affected genes are involved with cellular membranes, regulation of
transcription, plasma membrane solute carriers, and several transcription

factors belonging to the zinc finger proteins.

Publication III. From Publication II, it was observed that ultrasound impacts
Wnt/B-catenin, which is a regulator of osteoblastogenesis. To further study the
effect of ultrasound on Wnt/B-catenin signaling in MG-63 cells, the cells were

exposed to several ultrasound intensities (setup type D, f= 1.035 MHz, dc =
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20%, PRF =1 kHz, Pta = 0.2 to 2 W, 10 minutes), heat alone, and ultrasound at
a lower baseline temperature. At Pra = 2 W activity was significantly
stimulated (6 fold), while also resulting in an average temperature elevation to
47.6 £ 0.9 °C in the cell well. Thermal exposures between 46 and 48°C alone
increased the Wnt activity by 5 to 18 fold. The activity was lowered at 49°C (<5
fold). Sonication at the same intensity but having a lower baseline temperature
(average maximum peak temperature reached 409 + 0.7°C) showed
stimulation of Wnt activity by 2.6 fold. The induction of Wnt in chemically
pre-activated (lithium-chloride) cells was further stimulated by ultrasound by
2.7 fold and by thermal exposure alone at 47°C by 4.2 fold. However, the
ultrasound exposure at the low baseline temperature did not stimulate the
cells that were pre-activated. The level of HSP70 was elevated after ultrasound

treatments at normal baseline temperature and thermal exposure treatments.

Publication IV. The temperature elevation in the setup used in publication III
was measured using fine-wire thermocouples and infrared imaging. The
measurements in a standard 24-well plate showed that temperature
accumulation was highest at the polystyrene well walls, including the walls of
the neighboring, non-sonicated wells. The heating in the centrally located well
was higher than in the peripherally located wells. Wnt-specific TOPflash
reporter activity in MG-63 cells after ultrasound treatment was significantly
higher in the centrally located wells (6.3- to 11.5-fold induction) compared to
the peripherally located wells (1.9 to 1.8 fold).

Publication V. The acoustic and thermal exposure in the type D setup was
characterized using pulse-echo ultrasound, optical methods, and
thermocouples. Pulse-echo measurements indicated that the commercial
polystyrene 6-well plate is susceptible to frequency-sensitive transmission
(resonance frequency 938 + 9 kHz at 37°C). According to the laser Doppler
vibrometer measurements, 1-kHz PRF-induced radiation force displacements
were significantly smaller (2-3 nm) but less frequency dependent than the
displacements at the operating frequency (5-35 nm at 1.035, 1.625, and 3.35
MHz). Wave mode conversion occurs on the plate, and Lamb waves having
phase speeds 1111, 1110, and 1077 m/s at 1.035, 1.625, and 3.35 MHz,
respectively, propagate on the plate. Nanometer-scale vibrations are coupled
to the non-sonicated neighboring wells. Acousto-optic Schlieren

measurements indicated that standing waves are formed inside the cell well,
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resulting in up to a nearly 200 % variation in acoustic pressure amplitude in a
well. An exposure of cells in a D-type setup with typical LIPUS parameters
caused a temperature elevation of 2.7 + 0.3°C when using commercial acoustic

gel coupling and 0.3 + 0.2°C with circulating water coupling.
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6 Discussion

6.1 PUBLICATIONI

The proteoglycan synthesis of bovine primary chondrocytes
after ultrasound treatment exhibited approximately a twofold
increase relative to the controls. This finding indicates that
ultrasound may be a feasible method to increase extracellular
matrix production in cultured chondrocytes. There was a
significant (6-7 °C) ultrasound-induced temperature increase
inside the sonicated cell wells, but an induction of proteoglycan
synthesis was not evident after the heat treatment mimicking
this ultrasound-induced temperature elevation. Activation of
Hsp70 was not observed after ultrasound treatment, but a slight
increase was observed after hyperthermia treatment. Since the
heat treatment alone did not increase proteoglycan synthesis in
chondrocytes, our results indicate that in order to increase
proteoglycan synthesis with ultrasound, some effect of
ultrasound other than temperature rise is required.

The level of the thermal exposure can be an important factor
for proteoglycan synthesis. A one-time hyperthermia treatment
at 48°C (approx. 4°C higher than in this study) for ten minutes
causes apoptosis and suppression of proteoglycan synthesis in
rat articular cartilage [362]. Hyperthermia treatment of HCS-2/8
chondrosarcoma cells (41°C for 15 or 30 minutes) was found to
have a positive effect on both the cell viability and proteoglycan
synthesis rate, while the cell viability and metabolism were
decreased after exposing the cells to 43°C or higher for 30
minutes [128]. In our study, the cells experienced temperatures
of 43°C or higher for only five minutes.

Although the acoustic field distribution in the cell culture
well was found to be non-uniform, the temperature values
inside the well were relatively even. Multiple reflections from
the liquid-air interface, and heat conduction, most likely
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smoothed the temperature rise inside the well. The ultrasound-
induced temperature rise is fast and a similar temperature
profile is difficult to create, for example, using a water bath. The
water bath temperature profile used in our experiments was
higher at all time points, but the difference was always under
1°C. The difference in Hsp70 response between the
hyperthermia and ultrasound treatments could potentially be
explained by this difference in temperature.

Chondrocytes collected from a single bovine were found to
be unresponsive to ultrasound. A variation in responses has also
been reported by others [13,169] and may further complicate cell
manipulations.

6.2 PUBLICATION II

Previous studies investigating ultrasound interactions in bone
cells have focused on a small group of genes or proteins. In this
study, the first attempt was made to reveal whole genome-wide
transcriptional events occurring in bone cells under certain
types of ultrasound exposure. In addition, the cells were
exposed using an ultrasound setup that enables the ultrasound
exposures to be quantified while minimizing ultrasound
induced temperature elevations in the cell culture medium.

In the experiments, the cells were located in the acoustic far-
field beyond ziam. The reflections between the cell plate and
transducers were minimized using an absorption chamber,
favorable transducer orientation, and continuous transducer
movement. The wultrasound device geometry improved
acoustical field uniformity, enabling more accurate ultrasound
field calibrations and resulting in more repeatable cell
exposures.

One possible artifact in thermocouple measurements is the
viscous heating of the thermocouple probe [87,88,141]. In this
case the real medium temperature is overestimated due to a
friction-generated rapid local temperature rise. The real
temperature rise is thus likely smaller than the measured
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temperature elevation of 0.4°C. Therefore, it is very likely that
such a small temperature increase is not the primary bone cell
stimulating factor in this study.

The largest groups of affected genes were plasma membrane
proteins and transporters, and transcription factors, especially
zinc finger proteins. One explanation for changes in expressions
of solute transporters could be a formation of pores on the
plasma membrane, affecting the intracellular ion balance. Zinc
has been shown to increase the activity of vitamin D-dependent
promoters in osteoblasts [197], and a number of zinc finger
proteins appear to be involved in osteoblastic differentiation
[153]. Microarray analysis introduced several interesting
ultrasound-regulated candidate genes that have a role in bone
cell metabolism. Only a few studies can be found in the
literature on BMP-2-Inducible Kinase (BIK or BMP2K), which
has been shown to attenuate osteoblast differentiation [157]. A
high expression of plasma membrane protein CD151 in
chondrocytes has been shown to be a marker for high
chondrogenic capacity [108]. Enhancer of zeste homolog 2
(EZH2) [296], Homeobox B8 (Hoxb8a) [279], and low density
lipoprotein receptor-related protein 5 (LRP5) [17,100] have been
previously connected to the Wnt/B-catenin signaling pathway,
an important regulator of bone metabolism.

This study suggests that plasma membrane proteins and
transporters, and a group of zinc finger proteins, are most
sensitive to ultrasound-induced transcriptional regulation. This
information may be important, uncovering the mechanisms of
how ultrasound stimuli transmit their effects on the bone cells.

6.3 PUBLICATION III

To study the effects of ultrasound stimulation in bone cells,
activation of bone-essential Wnt signaling pathway [37,99] was
measured. To distinguish the thermal signal induction from the
other ultrasound mechanisms, hyperthermia exposures using a
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heated water bath and ultrasound exposures in a cooled water
bath were conducted.

The TOPflash reporter gene assays showed that ultrasound
exposure activated the Wnt signaling pathway in human
osteoblastic cells. Nuclear accumulation of p-catenin in
ultrasound-treated cells very shortly after the exposure was
further evident and confirmed the activation of the canonical
Wnt pathway. When LiCl was added to pre-activate the
pathway pharmacologically, a synergistic effect of ultrasound
and LiCl was observed. Previously, Wnt target genes have been
shown to be up-regulated to a greater extent by mechanical
loading when the canonical Wnt pathway was pre-activated by
the addition of Wnt ligand Wnt3A or by inhibiting GSK3 [269].

When the cells were exposed to hyperthermia, Wnt signaling
activity =~ showed  systematic temperature dependence.
Approximately half of the maximal induction could be inhibited
by the Wnt co-receptor blocker, Dkk-1. As with the ultrasound
treatments, a synergistic effect of LiCl and heat was observed.
To the best of our knowledge, there are no previous reports on
the heat-induction of Wnt signaling in bone.

When the water temperature in the ultrasound bath was
lowered to 30°C, the thermal dose was drastically lowered and
the maximum temperature was less than 41°C at the highest
acoustic power. With this cooled setup, the Wnt signaling
pathway was again significantly activated. Since hyperthermia,
with or without LiCl additions, could not induce Wnt activation
until the temperature rose up to 44.7°C, the Wnt activation was
not due to the temperature rise, but to some other mechanisms
of ultrasound. However, ultrasound exposure excluding the
thermal component and including LiCl pre-activation did not
result in the synergistic effect, indicating a more likely co-
modifying role of ultrasound. Supporting our results, Takeuchi
et al. also observed a small but significant increase in the nuclear
[-catenin level in ultrasound-exposed articular cartilage [311].

Despite the substantially elevated temperatures in ultrasound
and hyperthermia experiments, the integrity of cell membranes
was not compromised and the apoptotic markers did not
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respond markedly at time points or conditions showing the Wnt
activation. The observed induction of Hsp70 also indicates a
normal stress response of the cells to the applied exposures.
Some cell rounding was observed at higher temperatures. In
MG-63 cells, hydrostatic pressure (4 MPa for 20 min) has been
reported to cause recoverable cell rounding and Hsp70
induction, but not cell death [119].

In this study, the highest ultrasound intensity (407 mW/cm?)
was found to be the most efficient. This is in contrast to many
previous studies showing the best results with lower intensities,
ranging from 30 to 50 mW/cm? The lower intensities (41-326
mW/cm?) also slightly increased the Wnt activity, but it is
possible that the administered short, single burst sonication was
not sufficient for higher stimulation.

The exact knowledge of how the ultrasound or thermal
signals are mediated in the bone cells is not available. In our
experiments, where the specific protein kinase inhibitors were
used, the activity of TOPflash reporter suggested that both the
PI3K/Akt and mTOR signaling cascades were, at least in some
efficiency, involved in mediating the stimulatory effect of the
ultrasound exposure, as well as hyperthermia in human MG-63
cells. This agrees with the results of Takeuchi et al., who
reported that ultrasound effects are mediated via PI3K/ Akt
pathway in chondrocytes [311]. In general, in mammalian cells,
Wnt signaling has been shown to proceed via components of the
PI3K/Akt and mTOR signaling cascades [151]. The precise
regulation of B-catenin is known to be required for fracture
healing, as many Wnt ligands and receptors have been found to
be selectively up-regulated during bone healing [36,299]. In
patients with hypertrophic non-unions, osteoblasts showed
down regulation of multiple vital signaling pathways, including
Wnt pathway [127].

To conclude, this is the first study to report that ultrasound
exposure activates Wnt signaling pathway in human
osteoblastic cells. Specifically, this study suggests that Wnt
signaling can be activated through temperature elevation using,
for example, ultrasound energy deposition but also through
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some ultrasound induced non-thermal mechanism. Our
observations support the earlier hypothesis that ultrasound-
induced mild hyperthermia is a potential technique to stimulate
bone tissue. A few in vivo animal studies have indicated that
continuous (= 40°C for up to 44 days) or intermittent (43°C for
45 minutes once or twice a week) hyperthermia has a favorable
impact on bone growth after trauma [72,181]. The need for non-
invasive in vivo temperature evaluation should not limit its
applicability. Specifically, soft tissue temperature adjacent to
bone could be controlled using a magnetic resonance imaging—
based thermography [306].

6.4 PUBLICATION 1V

Ultrasound-induced temperature elevation is present to some
extent in most in vitro setups. Infrared and fine-wire
thermocouple temperature measurements indicate that the
polystyrene chamber wall is the most susceptible to have
increases in temperature during ultrasound exposures. In our
measurements, the size of the transducer was larger than the
diameter of the exposed chamber (also in Refs. [221,250,360]);
therefore, the plastic chamber wall was directly exposed to the
ultrasound field. This is analogous to the configurations in
which the exposure area inside a larger vessel is decreased using
a polystyrene ring to fix and immobilize the biological sample
[265]. This is also representative of the setup where a
polypropylene cell tube with a narrowing conical end contains a
small cell pellet at the cone tip and is exposed to a wide
ultrasound field [74]. There are many factors that may influence
the temperature elevation. Another possible source of increased
heating is when an efficient acoustic absorber is placed close to
the cells. This type of absorber is typically placed on top of the
cells, inside the well chamber, to attenuate standing wave
formation [146,163]. If it is placed close to the cells it can be
another possible source for increased heating. If sound cannot
propagate freely after travelling through the biological sample,
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the formed reflections between the transducer and well bottom,
and transducer and reflecting surface (air), will amplify this
heating. Therefore, even if the intrinsic sound absorption and
resulting temperature effects of relatively thin-walled (= 1 mm)
polystyrene plastic cell culture plates may be generally small,
the type of ultrasound setup may change this dramatically.

Furthermore, different plastic materials have different
ultrasound-loss factors. For example, polypropylene cell tubes
may be less suitable exposure chambers due to the higher
acoustic attenuation in polypropylene compared with, for
example, polystyrene (21-41 Np/m vs. 59-210 Np/mm at 5 MHz)
[291].

The floor structure of a commercial cell plate may not be a
continuous flat plate, as the edges of the plates may contain
open cavities. These cavities may be partly or completely filled
with water. As a consequence, the wells located at the edges of
the plate will have water in contact with their walls, but the
center wells will only have contact to the water through their
bottoms. The IR images demonstrated that the peripheral wells
that experienced the greatest cooling had lower temperature
elevations than the centrally located wells. In our setup this
temperature variation resulted in unequal biological activation
in different well chambers.

Infrared imaging is a spatially accurate, non-invasive, and
fast method to characterize complex ultrasound configurations,
with respect to induced temperature elevations. The largest
limitation is that the liquid immersed interfaces are not
observed, only the superficial layer. If the exposure system is
closed (i.e., requires opening before imaging), as in our case,
convection through moving air and evaporation will lower the
absolute temperatures. Different materials also have different
emissivity factors, which affect the absolute temperature
accuracy [247]. Therefore, using IR-imaging together with
thermocouple probes creates an efficient method to characterize
in vitro ultrasound systems.

Perhaps the most widely utilized commercial ultrasound
apparatus applied in the field of ultrasound tissue engineering
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research is the Exogen® fracture healing device. This device, as
well as corresponding manufacturer modified research devices,
has been used in many studies, indicating similarity among
studies with respect to ultrasound exposure level and its
interpretation. The literature indicates that within studies, the
nominal, undisturbed ultrasound output intensities [335,369]
and exposure times [182,289] have varied. The level of culture
medium inside the well insert may also influence the
temperature rise through acoustic field alteration and the
cooling effect of the liquid. Very low culture medium levels
[313], “normal” levels [168,332], and high levels with varying
sonication direction [368,369] have been applied. Considering
this heterogeneity in parameters and setups, our results from
this study imply that a simple temperature rise per acoustic
intensity relationship cannot be given. Unfortunately, very little
or no information regarding ultrasound-induced temperature
rise is usually reported for experiments.

As confirmed in our study, the variation in the temperature
of the ultrasound-exposed cells can, indeed, reflect directly on
the biological outcome. Therefore, in light of our results, we
believe that to apply repeatable stimulations to biological tissue
engineering material, a detailed temperature characterization
and systematic exposure protocol are a necessity for in vitro
ultrasound exposures.

6.5 PUBLICATION V

In publication V, several non-invasive measurement methods
were applied to study the interactions within the sonicated
plastic cell culturing plate.

Commercial polystyrene culture plate wells are usually thin,
and it can be estimated that sound loss in a 1.22 mm thick plate
is approximately 4% (frequency range from 1-3 MHz) [345].
Respectively, the measured bulk reflection coefficient for
polystyrene is 0.214 [139], indicating that the reflection of sound
is the dominant cause for sound attenuation in polystyrene
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culture plate. However, as our measurements confirm, the
culture wells, and other wavelength-scale layers, have very
strong frequency-dependent reflection coefficients. This further
complicates the quantification of reflection-induced acoustic
output variations. More importantly, frequency-selective
transmission is present even if the reflections between the target
and transducer are eliminated. The load inside the well, level of
acoustic pressure, plate thickness variation, and structure of
acoustic field will have an effect, especially in near-field
exposures, on the reflections. The effect of a temperature
increase from 20 to 37°C was found to have an approximately
1% effect on resonance frequency. Our results suggest that the
resonance effect may also be present with the cell culture inserts
and should be analyzed to obtain accurate exposure conditions.
Furthermore, with biological targets in contact with the plate
bottom, at plate resonance frequencies the resonating bottom
may, at least in theory, be a stimulating factor. To decrease the
sound reflection (and absorption), thin-bottomed culture plates
could be used [208]. Despite the fact that frequency-dependent
transmission is well known and applied to measure the density
of the liquids [126], to our knowledge the issue is not widely
taken into account in in vitro ultrasound setups.

Particle velocity profiles with three different operating
frequencies were all found to be irregular in shape but relatively
similar in magnitude. However, this similarity is partly
misleading, as the corresponding particle displacements are
inversely related to operating frequency and are largest at the
lowest operating frequency. Contrary to this, the PRF-induced
motions were nearly equal for all three operating frequencies.
Although they were smaller than the operating frequency
displacements, they were more uniform. The measured 2 to 3
nm displacements are comparable with the 4 nm value reported
for the Exogen® bone healing device [12]. The magnitude of the
PRF-induced motion was found to be directly related to acoustic
power. This motion is most likely induced by the radiation force
mechanism. By comparison, with the PRF velocity profiles at the
two other frequencies, the PRF velocity profile at 1.035 MHz
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was more center-weighted and uneven. As 1.035 MHz is close to
the resonant frequency of the well, while 1.625 and 3.35 MHz
are close to antiresonance frequencies (frequencies with
maximum reflection), our data proposes that the operating
frequency may be an important factor in the distribution of
radiation force-based PRF movement in cell culture plates.

Both the laser vibrometer and Schlieren measurements
verified that a standing wave is formed inside a sonicated cell
culture well when a liquid-air interface acts as a reflecting
surface. It was also observed that the liquid layer height cannot
be used to directly compensate for the change in transducer-well
separation or vice versa (constant water path length is
maintained). The tomographic images also indicate that the
radial structure of the acoustic field is different between the
node-antinode positions in the near field. Therefore, our
measurements suggest that the setups commonly used with in
vitro studies are susceptible to large variations in ultrasound
exposure.

The laser vibrometer measurements indicated that transverse
acoustic waves propagate across the well. Equations for shear
and Rayleigh speeds [26], give values of 1128 m/s and 1055 m/s,
respectively. Our measurements indicated phase speeds
between these theoretically estimated speeds, and group speeds
close to the Rayleigh speed when the wave propagation was
recorded in an empty well. Therefore, the measured wave
speeds and the wavelength-order thickness of the culture well
imply that Lamb waves are generated at the well bottom when
the directly sonicated well is water filled and the waves
propagate along the bottom to the neighboring wells.

To test if the transverse waves could propagate when the
plate is under water, a similar measurement at 1.035 MHz was
made by immersing the 6-well plate in approximately 130 mm
of water. According to our measurements, a wave packet having
group and phase speeds of 915 and 949 m/s, respectively
propagated in the plate. At the center of the non-sonicated well,
the displacement amplitude was calculated to be 3.0 nm.
Therefore, our data indicates that the transverse surface waves
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are generated from the immersed plate and propagate with
significant ~ amplitudes underwater. The transversely
propagating  burst experienced frequency  dependent
modulation. This modulation could be due to the interference of
two different Lamb waves [323]. To our knowledge, the
existence of guided Lamb waves in the cell culture plates has
not been reported before.

It was also shown that the cells in a well can be indirectly
stimulated with different waves, i.e., radiation force-based PRF
movement and surface wave movement. Using continuous
wave sonications the dynamic radiation force-based PRF
motion can be eliminated, leaving only the surface wave
component. Our data also highlights that the control wells must
not be positioned on the same plate as the sonicated wells due to
the “acoustic coupling” between the wells.

Temperature measurements at the bottom of the cell well
indicate that the combination of near field sonication, strong
ultrasound reflections from liquid-air interface and ultrasound
gel coupling is the most vulnerable to ultrasound induced
heating. The acoustic power (120 mW), used in this study
produced Isata of approximately 32 mW/cm? and resulted in a
3°C temperature rise. This is a large enough temperature rise to
potentially induce biologic effects on the cell culture. The
acoustic power delivered to the target or the temperature rise in
the tissue may depend on the thickness of the gel layer [31,262].
We believe that the large temperature rise difference between
the acoustic coupling methods is due to the inferior heat transfer
properties of surrounding air compared with circulating water.

This study demonstrates that simple ultrasound in vitro
setups are very susceptible to large variations in acoustic
exposure.
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/ Summary and
Conclusions

The following points summarize the main observations of this
thesis related to the aims set in the Introduction. For future
work, some conclusive remarks are given.

e The increase in proteoglycan synthesis in bovine primary
chondrocytes after ultrasound exposures implies that ultrasound,
either independent of temperature elevation or co-operatively with
hyperthermia, augments extracellular matrix production in

chondrocyte monolayers.

e Whole genome-wide microarray analysis of sonicated MG-63
osteoblastic cells indicated altered responses specifically on cell
membrane-related genes. Most likely, these changes do not

originate from the thermal ultrasound effects.

e In osteoblastic cells, both thermal and non-thermal activation of
Wnt signaling after ultrasound exposure was observed.
Ultrasound activation showed a synergistic effect with the
chemical pathway activator. Activation of this route forms new
insight into the physical and molecular basis behind the

ultrasound stimulation.

e Cell culture chamber walls having substantial sound absorption
and poor heat conduction are locations for the highest heating.
Standing waves further increase the heating. The type of acoustic

coupling may have significant impact on temperature rise.

e At the worst, temperature variation within the exposure chamber
may result in uneven cell stimulation. Multiple point temperature
measurements and/or thermal imaging may be required for

adequate characterization of the in vitro setups.
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e Many in vitro ultrasound setups are vulnerable to frequency-
dependent sound transmission, standing waves, and wave mode
conversion. These complicate the calibration of the ultrasound

wave and reduce the repeatability of the acoustic exposures.

e Radiation force-based displacement on the cell plate is generated
at the frequency of PRF.

e Lamb waves are generated on the culture plates. These guided
waves are potential cell-stimulating factors. Lamb waves and PRF-
induced radiation force vibrations can also couple to the other

wells on the same plate.

Focused ultrasound sources could outperform the planar
sources used in this work and most other studies of this field.
Geometrically focused transducers form a well-defined acoustic
focal area. Thus, they allow a spatially localized, shorter
exposure distance without strong non-linear harmonic build-up.
To treat larger samples, the focal point could be moved
mechanically or electrically.

Glass-bottom cell vessels having low acoustic absorption but
high reflectivity could be used instead of plastic ones. One
should however, be aware that the high speed of sound in glass
and thin structure increase the plate resonance frequencies and
may cause large uncertainties if not properly accounted for.
Culture chambers made of thin, flexible plastic membranes may
allow an optimal implementation for exclusion of standing
waves and minimization of thermal effects. With adherent
samples, minimal interaction with sound and low response of
membrane may reduce the radiation force effect.

There is a rich body of published in vitro works that show the
efficiency of therapeutic ultrasound in regenerative medicine
and tissue engineering. Our in vitro observations should aid in
efforts estimating the role of the various physical factors
impacting the cells during these studies. Our results may also be
helpful when this technique is further developed for tissue
engineering.
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Therapeutic ultrasound is

a stimulating technique in
regenerative medicine and tissue
engineering of bone and cartilage.
The ultrasound mechanism causing
these effects is unclear. Ultrasound
in vitro studies form the bases for
the method. In this thesis, bone
and cartilage cells sonications

and detailed measurements of

the exposure circumstances were
done. The results and the reviewed
literature highlight the variability
and complexity of these exposures

which hinder its optimal use.
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