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ABSTRACT 

Therapeutic ultrasound is clinically used to accelerate bone 
fracture healing. It alleviates osteoarthritic pain and improves 
joint functionality in the form of physiotherapy. The 
combination of stem cell engineering and therapeutic 
ultrasound has potential to differentiate and stimulate cells in 
scaffolds. However, the exact ultrasound mechanism causing 
these effects is unclear. In vitro studies form the biological and 
physical bases for this technique, and also provide the 
environment wherein the engineered cell structures are 
exposed. Ultrasound stimulation may not be repeatable in 
common in vitro setups that are usually optimized for culturing 
and biochemical assays. This results in variation in the exposure, 
and may affect the properties of the engineered material. In this 
thesis, cartilage and bone cells were sonicated in in vitro systems. 
Ultrasound-induced temperature elevation was measured and 
the stimulating effect of ultrasound was compared with 
temperature elevation alone. In addition, non-invasive acoustic 
and optical measurement methods were used to show the 
complex nature of in vitro sonications. Results indicated that 
ultrasound stimulation, not temperature rise alone, induces 
proteoglycan synthesis in primary bovine chondrocytes. 
Ultrasound activated Wnt/β-catenin signaling in human 
osteoblastic MG-63 cells through both the thermal and non-
thermal routes. Thermocouple and infrared camera 
measurements showed that many configurations are likely to 
have ultrasound-induced temperature elevations. Ultrasound 
standing waves were generated in typical exposure conditions 
and were sensitive to setup details. Optical measurements 
indicated that guided Lamb waves are generated on the 
commercial cell wells. Our results indicate that ultrasound 
exposures in common in vitro configurations are complex and 
highly variable.  
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1 Introduction 

In therapeutic ultrasound applications, high frequency sound 
waves alleviate pain, stimulate tissue repair, modify cells and 
cell constructs, or destroy malignant, diseased tissue. 
Ultrasound administration is routinely made from the outside of 
the body, non-invasively. Ultrasound can be targeted with high 
precision even into deep tissues and is non-ionizing, allowing 
repeated treatments through normal healthy tissue. 

Several therapeutic ultrasound techniques can be regarded as 
tools for regenerative medicine [209] and tissue engineering 
[177]. For example in sonoporation, the interaction of ultrasound 
and gas bubbles causes the cell permeability to temporarily 
increase, enabling transportation of materials, for example, 
DNA, into the cells [19,22,83,137,159,295]. Similarly among 
patients with leg ulcers, ultrasound treatments have been shown 
to accelerate the impaired wound healing [29,69,70]. 

Specific interest has been focused on traumatized or diseased 
bone and cartilage tissues and their biophysical manipulation 
using therapeutic ultrasound. In principle, this method is used 
in somewhat comparable manner to mechanical 
micromanipulation [104] and other non-invasive methods like 
external electric or electromagnetic fields [20,27]. It is often 
referred to as low-intensity ultrasound or low-intensity pulsed 
ultrasound (LIPUS) when ultrasound is applied in repeated 
short bursts. It shares many conventions and settings with 
ultrasound physiotherapy, which is routinely used on soft 
tissues and cartilage ailments. However, generally in low-
intensity applications the treatment is administered in regular 
short intervals (daily) for long times (up to several months) 
using average acoustic intensities from tens to few hundreds of 
mW/cm2 which is less than 1–2 W/cm2 that is typically used with 
physiotherapy [82,248]. Importantly, the mechanism behind the 
favorable tissue effect is thought not to be the ultrasound-
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induced temperature elevation, but primarily some other 
(mechanical) ultrasound effect [46,59,65,71,259]. This is often 
called a non-thermal effect. Technically it is distinct from shock-
wave lithotripsy therapy, which utilizes extremely high acoustic 
pressure pulses of only a few microseconds in length (review of 
this topic [336]). 

To further develop this technique and to overcome the 
limited tissue healing capabilities of bone and cartilage, 
ultrasound stimulation methods to enhance stem cell–based 
tissue engineering [226,261] have been developed. At its best, 
ultrasound could differentiate, stimulate, and maturate bone 
and especially cartilage structures in vitro and in vivo. 

Ultrasound sonication has been shown to accelerate bone 
fracture healing in animal models and in clinical studies. At the 
moment, a LIPUS device for the treatment of human fresh bone 
fractures and bone non-unions lacking the normal bone healing 
capacity is commercially available (Exogen®, Smith & Nephew, 
TN/Bioventus LLC, NC, USA). Animal models have suggested 
that ultrasound intervention could be used, for example, in 
osteoporotic bones and fractures [30,38,191]. In cartilage, 
traditional higher-intensity ultrasound stimulation has been 
reported to alleviate osteoarthritic pain and improve joint 
functionality [274]. In animals, ultrasound has been reported to 
repair injured or arthritic cartilage using acoustic intensities 
comparable to those produced by the clinical bone-healing 
device [49,109,134]. Studies have further indicated that the 
combination of stem cell tissue engineering and low-intensity 
ultrasound has the potential to differentiate and stimulate cell 
constructs [42,53,74]. Unfortunately, despite extensive research 
and numerous biological findings, the exact physical ultrasound 
mechanism causing these favorable effects is not known 
[46,158,207]. 

A large number of in vitro studies have formed the biological 
and also physical bases for the stimulation (see Chapter 3.6). 
These studies provide guidance especially for ultrasound tissue 
engineering that uses similar in vitro setups to grow and expose 
the cells or cell constructs. The common culturing conditions 
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and configurations that are optimized for cell welfare and 
biochemical assay accuracy allow ultrasound implementation, 
but in many cases in a simplified fashion that creates 
acoustically complex exposure conditions that may not be 
repeatable without demanding calibration measurements.   The 
lack of adequate calibration measurements may result in 
variations during and between the ultrasound exposures that 
will affect the biological material properties and quality. 

In many studies, the cells are placed close to the transducer 
face in the acoustic near field (for example [57,239,252]). This 
short distance simplifies the experimental setup in that it allows 
the use of acoustic gel to couple the transducer to the cell 
chamber instead of using liquid coupling. However, this simple 
setup creates an acoustically complex situation: a spatially 
varying ultrasound exposure. The acoustic field is further 
complicated by the transmission through the cell chamber. The 
cell chamber or tube is usually made of a plastic material. Cells 
in monolayer or three-dimensional matrix are in direct contact 
to this plastic. Before ultrasound can propagate to the cells, 
sound waves must travel through the plastic bottom of the 
chamber. During the transmission, the reflection and absorption 
of the wave at the plastic-liquid interfaces and in the plastic 
material, respectively, attenuate the wave. After passing though 
the cells, the sound travels inside the chamber in the culture 
medium column, which is in most cases only a few millimeters 
high. Nearly perfect sound reflection occurs at the medium-air 
interface, resulting in reverberations and standing waves 
between the air, cell chamber bottom, and transducer face. 

The sound absorption in plastics combined with the multiple 
reflections makes the in vitro systems very vulnerable to 
temperature elevations. Unfortunately, temperature 
measurements are not routinely conducted or reported in 
studies. As the sound transmits to the cell culture chamber, 
wave mode conversion may occur. Therefore, the ultrasound 
exposure of the cells may be influenced not only by longitudinal 
waves, which are usually considered, but also by shear waves, 
and surface waves. 
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All these factors complicate the calibration and repeatability 
of the exposures. The co-existence of multiple wave modes also 
hinders the specification and optimization of effective 
ultrasound exposures. However, detailed studies exploring 
these phenomena in common in vitro configurations have not 
been reported. 

The aims of this thesis were  (1) to establish and expand the 
effectiveness of ultrasound exposures for tissue engineering by 
conducting cartilage and bone cell in vitro sonications; (2) to 
systematically measure the ultrasound-induced temperature 
elevations, show the susceptibility of in vitro configurations to 
ultrasound-induced heating, and compare the stimulating effect 
of ultrasound and temperature elevation on bone cells; and (3) 
to show, using non-invasive measurements, the complex nature 
of in vitro ultrasound exposures relevant to tissue regeneration 
and engineering. 

First, the bovine cartilage cells were exposed to ultrasound or 
temperature elevation alone (publication I). After one to five 
days of daily exposures, the proteoglycan synthesis levels were 
measured and the two exposure methods were compared. In the 
second study, human osteoblastic MG-63 cells were exposed to 
ultrasound using a setup with minimal temperature elevation 
and standing wave formation (publication II). Through a 
genome-wide microarray analysis, the genes responsive to 
ultrasound stimulation were sorted. Based on the micro-array 
observation, in the third study activation of Wnt cell signaling in 
MG-63 cells after ultrasound exposure was studied (publication 
III). The exposure setup was modified from the previous one 
based on the observations from the sonoporation study [160] 
and a review of the literature. The sonications were done using 
two setups, either including or excluding a thermal component 
arising from the ultrasound. In the fourth study, the 
temperature elevation distribution after ultrasound exposure 
was studied using temperature-dependent Wnt signaling, fine-
wire thermocouple measurements, and non-invasive infrared 
imaging (publication IV). Finally, to characterize the in vitro 
acoustic exposure conditions, sound transmission, standing 
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wave formation, radiation force effect, and wave mode 
conversion were studied using pulse-echo ultrasound, non-
invasive laser Doppler vibrometery and acousto-optical 
Schlieren measurements (publication V). 
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2 Ultrasound Wave 
Propagation and Interaction 
with Tissue and Tissue 
Culture Plates 

2.1 ACOUSTIC FIELD 

In most therapeutic ultrasound applications, the temporal 
duration of the ultrasound wave is long, and the wave is 
delivered either as a continuous wave (CW) or as wave bursts 
comprising ten or more acoustic cycles. Thus, the delivered 
ultrasound may be approximated as narrow-band, nearly 
monochromatic longitudinal waves.  

The acoustic pressure field from a planar ultrasound source 
in a homogenous medium is commonly divided into two 
distinct regions. The first is the field close to the transducer. This 
acoustic near-field, or Fresnel zone, is governed by diffraction. 
For a transducer operating at a fixed frequency, the near-field 
has pronounced pressure variation both in the direction of 
sound propagation and perpendicular to it (Fig. 2.1). The span 
of the near-field depends on the speed of sound in the medium c, 
the acoustic frequency f, and the radius of the transducer a. For a 
circular plane piston transducer, the near-field can be estimated 
to extend to distance zLAM = a2/(c/f) = a2/λ, where zLAM is the 
distance from the source to the last axial maximum and λ = 
acoustic wavelength [60]. A more conservative estimate for the 
near-field distance is the Rayleigh distance zR = πzLAM.  For the 
plane non-focused transducer, the distance zLAM is the natural 
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focal distance from the source. The half beamwidth is 
minimized [244,365] at this distance.  

 
The last axial maximum can be enhanced by moving it closer to 
the transducer, using an acoustic lens or a spherically curved 
transducer. The acoustic focus will be located close to the 
geometric focus of the curved transducer. By decreasing the 
radius of curvature, the diameter and the length of the focus can 
be decreased resulting in an increase in pressure amplitude at 
the focus for a given source pressure. Focusing can also be 
accomplished using acoustic reflectors, or electrical focusing of 
phased arrays [142]. 

The second sound field region after the near-field is the 
acoustic far-field (Fraunhofer zone). In this region, the wave 

 

Figure 2.1. (Top). Normalized acoustic pressure amplitude distribution for a 
planar circular transducer. Normalization is relative to the point (zLAM, 0). 
(Center). Contour plot showing the -3, -6 and -12 dB pressure contours. Contours 
are normalized at each axial distance. (Bottom). Normalized axial pressure 
distribution when y = 0. (c = 1485 m/s, f = 1 MHz, a = 12.5 mm, zLAM = 105 mm, 
radial and axial axes are not in scale). 



 

Dissertations in Forestry and Natural Sciences No 172                     9 
 

fronts resemble expanding spherical waves and the spatial 
amplitude decreases accordingly in the axial direction (Fig. 2.1).  

2.2 SOUND PROPAGATION IN A MEDIUM 

During propagation in a medium, the ultrasound wave is 
subjected to non-linearity and attenuation. At high acoustic 
pressures, the sound wave propagation is distorted. During the 
positive acoustic pressure phase of the wave, the propagating 
wave and the particle velocity are in the same direction, 
resulting in a higher speed of sound. Where there is negative 
pressure, the particle velocity opposes that of the propagating 
wave, resulting in a lower speed of sound. Thus the 
compressional part of wave catches up to the rarefactional part. 
This is known as the convective nonlinearity. If the material 
stiffness is higher (lower) at the compressional (rarefactional) 
locations, this results in a higher (lower) speed of sound and a 
larger distribution of speeds within the pressure wave. This 
effect is known as the material nonlinearity. The non-linear 
phase of the speed of sound, cβ, for the propagating pulse can 
now be defined as cβ = c + (1 + B/2A)u = c + βu, where u = particle 
velocity amplitude and β = 1 + B/2A is the nonlinearity 
parameter for the medium [180]. Nonlinearity causes distortion 
of the pressure wave shape, resulting in the buildup of higher 
harmonic frequencies (2f, 3f, 4f, …)  in the acoustic waveform as 
the distance from the source increases. 

The sound wave is attenuated due to the absorption in the 
medium, scattering from the particles in the medium, and 
reflection from the acoustic interfaces. If the intensity of the 
incident wave is I0, then for the wave propagation path length z, 
the intensity can be written as I = I0e-2αz, where α is the 
amplitude attenuation coefficient (cm-1) that includes the effects 
of both absorption and scattering. The absorbed component of 
the wave energy is dissipated to the medium. Neglecting the 
thermal conduction, the rate of temperature rise due to the 
absorption can be estimated as dT/dt = 2αI/(ρCp), where Cp is the 
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specific heat capacity (J/kgK) [142]. Sound that is scattered or 
reflected by particles in the medium will change its direction of 
propagation, resulting in increased attenuation of the beam. The 
ultrasound attenuation in soft tissues and trabecular bone 
increases approximately linearly with frequency up to 2 MHz 
[105,346]. 

In materials with low viscosity, such as liquids, the sound 
absorption causes bulk medium movement known as acoustic 
streaming. This flow of fluid is due to the Rayleigh radiation 
pressure within the medium. A simplified equation describing 
the flow velocity is v = (2αI/cν)d2Q, where ν is kinematic 
viscosity, d is beam diameter, and Q is a system-specific 
geometric factor. Medical transducers are capable of generating 
streaming with velocities of several centimeters per second 
when operated in liquids [304,305].  

If the exposed medium contains small gas bubbles or the 
negative pressure amplitude is high enough to extract gas from 
the tissue to form bubbles, the bubbles may act as nuclei for 
acoustic cavitation [180]. The likelihood for cavitation processes 
increases with increasing negative pressure and with decreasing 
frequency [8,16]. Acoustic cavitation is generally divided into 
two different categories: non-inertial (stable) and inertial 
(transient) cavitation. In non-inertial cavitation, the gaseous 
inclusion oscillates in the acoustic field [180]. The amplitude and 
phase of the bubble oscillation depends on its size in respect to 
the resonant bubble size at the acoustic frequency. For 
approximately resonant size bubbles, the velocities of bubble 
motion and forcing pressure field are in-phase and the 
amplitude of the bubble motion is significantly increased. 
Depending on the size of the bubbles with respect to the 
resonance size, the bubbles may attract or repel each other 
through a radiation force between the bubbles known as the 
secondary Bjerknes force. When the acoustic pressure is elevated, 
the bubble oscillation becomes nonlinear. The nonlinearly 
oscillating bubbles sends sound at the harmonics, 
ultraharmonics (3f/2, 5f/2, 7f/2, …) , and subharmonics (f/2, f/3, 
f/4, …) of the acoustic frequency [234]. If the acoustic amplitude 
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is sufficiently high, the bubbles may grow due to rectified 
diffusion [79]. In rectified diffusion, during the rarefactional 
phase, the bubble in liquid expands. The gas concentration 
inside the bubble is therefore lowered resulting in a diffusion of 
gas into the bubble. The opposite happens during the 
compressional part of the wave. However, the bubble surface 
area which is available for this flow is larger for the expanded 
bubble. Thus the net flow of gas during one acoustic cycle is 
higher into the bubble than from out of it. In addition, the liquid 
shell around the bubble becomes thinner and thicker during the 
expansion and contraction phases, respectively. Thus, the 
gradient of the gas concentration is higher during the 
expansion-phase resulting in higher gas diffusion into the 
bubble compared to gas outflow during the contraction-phase. 
As a result of these effects, the time-average size of the bubble 
increases. 

During bubble growth and oscillation, the bubbles may 
create local perturbations in the liquid medium resulting in 
small-scale fluid streams at the periphery of the bubbles. This 
phenomenon is known as microstreaming [78]. If the amplitude 
of the pressure source is further elevated and the bubble growth 
further increased, during the contraction of the bubbles, the 
inertia of the surrounding medium may become so large that the 
increasing gas pressure in the bubbles is not able to arrest the 
compression, resulting in a violent and rapid bubble collapse 
[84]. The cavitation process that leads to bubble collapse is 
known as inertial cavitation. During the collapse, the 
microscopic temperature elevation and pressure rise may be 
several thousand Kelvins and hundreds of MPas, respectively 
[84]. Neighboring interfaces may be punctured and eroded due 
to the high-speed liquid jets, and the formation of chemical free-
radicals is possible [64,216]. A suitable bubble size is one of the 
most important pre-requisites for inertial cavitation. For air 
bubbles in water, the resonance size for the bubbles can be 
estimated using Minnaert resonance frequency fM = 
1/(2πR0)(3γPo/ρ)1/2, in which R0 is the  mean bubble radius (m), γ 
is the polytropic coefficient (1.4 for air), and P0 is the ambient 
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pressure [180]. This can be approximated as fMR0 = 3.3 m/s. 
Artificial gas bubbles of approximately resonant size and having 
high echogenity can be administered to achieve and amplify 
cavitation [331].  

When an acoustic wave meets an acoustic interface, part of 
the wave is reflected (Fig. 2.2). Assuming plane waves, real 
acoustic impedances (density ρ multiplied with c) and an 
interface having dimensions much larger than the wavelength, 
the incidence angle-dependent coefficient for pressure reflection 
is [161]  

 ,
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where Z1,2 are the acoustic impedances in media 1 and 2, 
respectively, and θi and θt are the incident and transmission 
angles, respectively.  

The coefficient for transmitted pressure at the boundary can 
be formulated as 
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For the transmitted wave intensity and power, the reflected part 
is RI = R2 and the transmitted part is 
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These equations do not take into account the frequency 
dependency of the transmission in the case of wavelength-scale 
objects or the generation of shear and surface waves in solids 
through acoustic wave mode conversion [26,271]. 

When the reflected wave encounters the incident wave, a 
standing wave pattern is created [161].  If the incident wave has 
pressure amplitude of p0 = 1, the amplitude for this summed 
incident and reflected wave having an amplitude R can be 
written 

 ( ) ( ) ( ) ( )[ ] ,sin1cos1 2
1

1
22

1
22 zkRzkRp −++= (2-4) 

where k1 = 2π/λ1 is the wave number in medium 1. In a special 
case of reflection from water-air interface (Z2 << Z1, R = -1), the 
resulting standing wave pressure can be written as 

 ( )zkp 1sin2= , (2-5) 

 

 

Figure 2.2. Longitudinal wave reflection and refractive transmission between 
media 1 and 2. The speed of sound c in medium 1 is lower than the speed of 
sound in medium 2. L = longitudinal wave, S = shear wave, θ = angle respect 
to the normal of the interface, i = incident, r = refracted, and t = transmitted. 
Modified from [271]. 
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which has  the maximum amplitudes, or antinodes, at p = 2 at z = 
-nλ/4 (n = 1, 3, 5, …) relative to the reflecting surface at z = 0. 
Respective pressure minima, or nodes, are at the positions z = -
nλ/2 (n = 0, 1, 2, 3, …). Standing wave patterns have distinct 
pressure antinodes or nodes in z = λ/2 intervals. When a 
standing wave is established in a fluid containing particles or 
gas bubbles, they are affected by a substantial radiation force 
known as the primary Bjerknes force [180].  This force separates 
the particles into the pressure antinode or node positions 
depending on the particle size and the operating frequency.  
This force is capable of moving and holding cells or cell-size 
particles inside the blood vessels or in chambers, establishing 
spatial patterns that replicate the standing wave 
[47,68,94,95,170].   

A steady force originating from the attenuation of the 
propagating wave on absorbers or reflectors in the beam path 
due to the transfer of wave momentum is known as Langevin 
radiation force [307,326,350].  In case of when the sound beam 
hits a perfect sound absorber, the force on the absorber is F = 
W/c, where W is the acoustic power (W). For targets having 
absorption α, the generated force is F = 2αI/c, where I = ITA= the 
time-average intensity and F is a force per unit volume [237]. 
For a perfect sound reflector, the force is doubled F = 2W/c. Both 
the absorption and the scattering contribute to the generated 
force when the target deviates from a perfect absorber or 
reflector.     

2.3 WAVE MODE CONVERSION 

When a longitudinal wave propagates through a medium 
interface, its energy is distributed into longitudinal, shear and 
surface waves (Fig. 2.2). In fluids such as water, the incident and 
reflected waves can only be longitudinal, as shear waves are not 
supported in fluids. The longitudinal speed of sound c, and the 
shear speed of sound cS in solids can be calculated using the 
equations c = [(K+4/3G)/ρ]1/2 and cS = (G/ρ)1/2, respectively. 
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Parameters K and G are the bulk and shear modules, 
respectively. In hard solids, the shear speed is approximately 
half of the longitudinal speed of sound, reducing both the 
wavelength and acoustic impedance. The reflection and 
refraction angles can be calculated using Snell’s law, c1sin(θt) = 
c2sin(θi). When c1 < c2, the first critical angle is defined as θCR1 = 
sin(c1/c2)-1. Ideally at this angle, the longitudinal wave reflects at 
angle θi and is converted to surface or interface waves in 
medium 2. Shear waves continue to propagate in medium 2 at 
angle θtS. The second critical angle is defined as an incident 
angle that results in a 90° shear refraction angle θCR2 = sin(c1/c2S)-1. 
Above this second critical angle, only surface or interface waves 
can propagate in medium 2 [271]. Compared to longitudinal 
wave attenuation, the reported values indicate that shear wave 
attenuation is approximately twice as high in cortical bovine 
bone (70 Np/m/MHz vs. 130 Np/m/MHz) [355] and significantly 
higher in several commercial plastics (approximately 24–64 
Np/m/MHz vs. 250–300 Np/m/MHz) [356]. In soft tissues 
including bovine muscle, the shear attenuation is roughly three 
to four orders of magnitude higher than the longitudinal 
attenuation (3–10 Np/m/MHz) [105,142,200]. 

In addition to mode conversion to shear waves, induction of 
interface and surface waves is also possible. Several types of 
acoustic surface waves can propagate along solid isotropic 
materials. These include Rayleigh surface waves along a free 
semi-infinite solid interface, Stoneley interface waves along a 
semi-infinite solid–solid interface, Scholte interface waves along 
a semi-infinite solid-liquid interface, and Lamb waves along a 
solid free plate [271]. In a liquid immersed solid, the wave may 
become leaky, in other words, energy is radiated to the 
surrounding liquid. Leaky Rayleigh waves having speed cR can 
propagate if the bulk shear speed cS of the solid is nearly equal 
to or larger than the longitudinal speed of sound c in the 
surrounding liquid [223], thus limiting their presence in hard 
solids. Rayleigh speed is generally slightly less than cS. In the 
case of a soft solid-liquid interface (cS < c), for example, polymers 
in water, Scholte waves propagate so that almost all the energy 
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of the wave is in the solid, resulting in propagation that is 
sensitive to the properties of the solid [102]. 

Lamb waves are a result of coupled longitudinal and shear 
waves, and both symmetric (S) and antisymmetric (A) Lamb 
wave modes can propagate in free (air) or liquid-immersed 
plates (Fig. 2.3). Symmetry is defined by the particle 
displacements with respect to the center of the plate. The Lamb 
wave excited plate shows both in-plane and out-of-plane 
particle displacements. For a free plate having a thickness of 2h, 
the Rayleigh-Lamb wave dispersion equations can be written as 
[271] 
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where exponents +1 and -1 are for the symmetric and 
antisymmetric Lamb wave modes, respectively. The actual 
dispersive Lamb velocity is under the terms s2 = (ω/c)2 – k2 and q2 
= (ω/cS)2 – k2. Here k = 2πf/cP, in which cP is the Lamb wave phase 
velocity. Several symmetric and antisymmetric modes having 
different speeds and particle displacement shapes (in-plane and 
out-of-plane movement) can propagate on the same plate. 
Starting from the frequency-plate thickness product fd = 0, the 
velocity of the zero-order modes cP approaches cR from cP < cR 
(A0) or cP > cR (S0) as the fd increases.  The higher-order modes fd 
> 0 approach the shear speed cS from cP > cS. The fluid loading of 
a plate has been shown to affect the propagation of Lamb waves 
especially when cS and c, and the densities of the plate and 
liquid are of the same order, respectively [86,270]. Low-
frequency guided Lamb waves have been observed through 
pulse-echo ultrasound in pulsing human heart walls [154], as 
well as in externally vibrated pig myocardium, spleen phantoms 
and in vivo pig heart [232,233,333]. Lamb waves have been 
generated in long bones in vivo [235] and in bone phantoms 
[58,263] using ultrasound excitation. 
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Figure 2.3. Illustration of symmetric (top) and antisymmetric (bottom) guided 
Lamb waves propagating in 2h thick plate. The arrows indicate the particle 
displacements at the plate. Modified from [271]. 
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3 Therapeutic Ultrasound in 
Bone and Cartilage 

3.1 BONE 

Bone is a complex connective tissue that has several important 
functions in the body [52]. Bones form a structure to which the 
muscles can attach; they protect the internal organs in the body; 
they serve as mineral storage; and they are the location for blood 
cell production. Bone matrix consists mostly of inorganic 
(hydroxyapatite, 65% of bone mass) and organic (mostly type I 
collagen) material. Other organic components include proteins 
such as bone sialoprotein, fibronectin, osteocalcin, osteonectin, 
osteopontin, enzymes (collagenase, alkaline phosphatase; ALP), 
growth factors (transforming growth factor-β; TGF-β), and 
cytokines (prostaglandin E2; PGE2, interleukins; IL-1, IL-6). 

Bone has two main structural parts. The outer periosteum-
covered dense part of the bone is the compact bone. It has 
concentric ring-like structures known as osteons. In osteons, 
layers of concentric bone lamellae surround canal-like structures 
known as Haversian canals. The blood vessels and nerves go 
inside these canals. Under the compact bone, the structure is 
highly porous and is called trabecular bone. Trabecular bone 
forms the medullar cavity which contains the bone marrow. 
Bone marrow is the source for blood cell production and the 
location of multipotent stromal (stem) cells that can differentiate 
to, for example, bone or cartilage cells. 

Several different cells are present in bone [52].  
Osteoprogenitor (stem) cells are located at the bone periousteum 
and differentiate to osteoblasts. Osteoblasts, the bone forming 
cells, are found on the surfaces of the bones. Fully matured 
osteoblasts transform to osteocytes which are numerously 
present inside the bone matrix (within lamellae). Osteocytes, 
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which are connected to each other by tiny canal-like structures 
(canaliculi), are assumed to play an important role in sensing 
mechanical perturbations. Osteoclasts are specialized cells 
which can resorb bone tissue to its basic elements so it can be re-
used by the osteoblasts to form new bone. Bone tissue has high 
capability to regenerate and repair. Normal bone growth 
(modeling) and bone structure maintenance (remodeling) are 
both a balanced action and interaction of osteoblasts and 
osteoclasts. Osteoblasts and osteoclasts create the functional unit 
of bone known as the basic multicellular unit.  

A fractured bone can heal either through direct 
intramembranous (primary) healing or through indirect 
(secondary) healing [205]. In direct fracture healing, the fracture 
gap between the bone ends is filled with bone by the osteoclasts 
and the osteoblasts, and then remodeled into final lamellar bone. 
Direct healing is rare without external intervention and requires 
that the fracture ends are nearly in contact (separation < 1 mm). 
In addition, the fracture ends must be rigidly fixed, thus 
eliminating any movement. Therefore, the more common type 
of fracture healing is indirect healing which can fill larger gaps. 
Indirect healing also benefits from small mechanical 
perturbations of the fracture. It encompasses both 
intramembranous healing and endochondral healing in which 
cartilage tissue is temporarily constructed and then remodeled 
into bone tissue. 

Indirect healing consists of several different phases [205]. The 
inflammatory phase occurs immediately after the trauma, 
creating a haematoma which consist of the cells from blood 
circulation and bone marrow around the fracture. The 
haematoma coagulates and creates a loose support around the 
fracture. During this phase, inflammatory cells such as 
macrophages secrete tumor necrosis factor-α (TNF-α) and 
interleukins (IL-1β, IL-6 etc.). Vascular endothelial growth 
factors which activate the angiogenesis are also induced. Acute 
inflammatory reaction is highest on the first day and is resolved 
by one week. In the next phase, granular fibrous tissue, which is 
formed around the fracture, is transformed into cartilage 
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through endochondral ossification. First, the mesenchymal stem 
cells from the surrounding tissue, bone marrow, and possibly 
systemically from the peripheral circulation, are recruited. The 
cells are then differentiated to osteogenic cells. This process is 
orchestrated specifically by bone morphogenetic proteins, such 
as BMP-2 and BMP-7 and TGF-β proteins. At the end of this 
process, the fracture is surrounded and supported with hyaline 
cartilage which expresses high levels of extracellular matrix 
protein type II collagen and proteoglycans. This structure is 
known as the soft fracture callus. Simultaneously, 
intramembraneous ossification generates a hard woven bone 
callus around the fracture further increasing its rigidity. The 
cartilaginous appearance peaks around 7 to 9 days post-fracture. 
Revascularization takes place in the callus. The chondrocytes 
become hypertrophic, generating calcified mineralized matrix in 
the callus. This calcified matrix is then resorbed into woven 
bone through the activation of several proteins such as receptor 
activator for nuclear factor kappa B ligand (RANKL), 
osteoprotegerin, and TNF-α. The process of cartilage resorption 
and hard fracture callus formation peaks at 14 days post-
fracture, and shows callus mineralization and presence of type I 
collagen, osteocalcin, ALP, and osteonectin. The calcified callus 
is finally transformed into woven bone. In the final stage of 
fracture healing, the woven bone is remodeled into lamellar 
bone. This process starts 3 to 4 weeks after trauma and may last 
for several years. 

3.1.1 Wnt/β-catenin signaling in bone 
Cellular signaling within single cells and between cells directs 
the fundamental cellular processes, such as cell development, 
differentiation, and apoptosis. Specific interest, in the case of 
bone cell development, has been directed to canonical Wnt/β-
catenin which is one of the secreted proteins in the family of 
Wnt proteins mediating cellular signaling [24]. Wnt/β-catenin 
signaling has been shown to be activated at different stages of 
fracture healing [290]. Its induction has been shown to accelerate 
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fracture healing, while inhibition of this signaling has been 
shown to induce delayed fracture healing [290]. 

In Wnt/β-catenin signaling, the Wnt protein binds to the 
receptors in the plasma membrane of the cell. This initiates an 
intracellular signaling event in which the phosphorylation of β-
catenin protein by glycogen synthase kinase GSK-3β is 
inhibited, and β-catenin is stabilized. β-catenin levels then rise in 
the cell cytoplasm and β-catenin is translocated into the cell 
nucleus. Inside the cell nucleus, it binds to lymphoid-enhancer 
binding factor (LEF-1) and T-cell transcription factor (TCF). This 
complex starts then to regulate gene expressions. 

3.2 CARTILAGE 

Cartilage is a flexible connective tissue found in the ears, nose, 
skeleton, intravertebral discs, and joints. The types of cartilage 
found from human body include elastic cartilage, fibrocartilage, 
and hyaline cartilage. 

Articular, hyaline-like cartilage covers the bones at the 
synovial joints [52,121]. It provides low-friction joint movement 
and equalizes forces concentrated at the end of the bones. It is 
nutritioned (mostly) and lubricated by the synovial fluid from 
the synovial membrane. Articular cartilage is mainly composed 
of chondrocytes (cartilage cells), collagen fibers (types II, IX, and 
XI) which form the extracellular matrix, proteoglycans, and 
water (75-80% of tissue). Proteoglycans consist of 
glycosaminoglycans (specifically chondroitin-4 and 6-sulfates) 
connected to a specific protein core. Aggregating proteoglycans 
bind to hyaluronan chains in a regular pattern. Aggrecan is a 
specific proteoglycan in cartilage. Proteoglycans are trapped to 
the extracellular matrix by collagen fibers in complex manner. 
Negatively charged proteoglycans assist in regulating the water 
content of the cartilage and in ion binding. Articular cartilage 
can be divided to four different zones, which from the top to 
bottom are the superficial or tangential zone, the transitional 
zone, the deep or radial zone, and the calcified zone above the 
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subchondral bone. The calcified zone and noncalcified deep 
zone are separated by a thin undulating layer, termed the 
tidemark.  The calcified zone and tidemark restrict the passage 
of substances from the subchondral bone into the upper 
cartilage layers [14]. 

Articular cartilage is a specialized, avascular, and aneural 
tissue having very limited healing capacity in cases of injury or 
deteriorating metabolic disease. Osteoarthritis is the most 
common joint disease, which slowly but progressively 
deteriorates the cartilage and underlying bone. Osteoarthritis is 
characterized by increased proliferative and metabolic 
chondrocyte activity, by the presence of inflammatory cytokines 
(interleukins, TNF-α) and collagen-digesting enzymes know as 
matrix metalloproteinases (e.g. MMP-13), by the 
dedifferentiation of chondrocytes to fibroblastic cells, and in the 
final stage, by the formation of osteochondral nodules known as 
osteophytes on the surface of degenerated cartilage [281].  

3.3 CELL-BASED TISSUE ENGINEERING FOR BONE AND 
CARTILAGE 

The principle in tissue engineering is to use methods of biology, 
chemistry, and physics to replace, repair, and regenerate the 
tissue and organs in body [177,226]. This can be accomplished 
using cell, tissue or organ transplants, or by replacing the 
degenerated tissue with prostheses. In cell-based tissue 
engineering, cells or specifically stem cells and progenitor cells 
which have the capability to differentiate into several cell types 
such as bone and cartilage are harvested, for example, from the 
cartilage, bone marrow or fat [226].  The cells can be further 
cultured in vitro to advance the cell differentiation and to 
increase the cell proliferation. The grown cell mass can then be 
transplanted into the target of treatment for further growth and 
maturation. The cells can impregnate porous artificial three-
dimensional structures known as cell matrices or scaffolds. 
These structures are engineered to advance tissue growth into it 
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(osteoconductive/chondroconductive structure). It serves as 
structural support for the cells enabling extracellular matrix 
binding, vascularization and fluid flow between the cells. 
During cell culturing or post-transplantation, the cells can be 
stimulated to induce cell growth and differentiation using 
osteoinductive/chondroinductive methods, such as chemical 
agents (BMP’s, growth factors) or external physical stimulants 
such as ultrasound exposures. 

3.4 STIMULATION OF IN VIVO BONE 

It is estimated that approximately 5% to 10% of the 7.9 million 
bone fractures occurring annually in the United States suffer 
from impaired healing [204]. Bone healing can be regarded as 
normal if healing occurs within three to six months after the 
fracturing incident. The fracture is defined as a delayed union if 
it is not united approximately six months after the incident. If 
the healing has not ended within nine months after the incident 
and has not shown signs of healing for three consecutive 
months, the fracture is classified as non-union [236,255]. Several 
methods have been developed to accelerate bone healing, 
including ultrasound [75,204]. 

A set of animal studies was conducted in the 1950s to study 
the therapeutic effect of ultrasound on bone [9,23,55,201,225]. A 
few years later, Ardan et al. summarized many of these earlier 
observations and argued that despite all the studies reported, 
and evidence of some stimulatory effects on bone or bone 
fracture healing, the results were still inconclusive [10]. In this 
same study, the authors sonicated dogs having artificial bone 
defects. Three continuous wave (CW) ultrasound exposures (f = 
0.8 MHz) of five minutes in length were delivered, each 
separated by five minutes of cooling. The spatial-average 
temporal-average intensity (ISATA) was 0.5 to 2.5 W/cm2, 
corresponding to temporal-average acoustic powers (PTA) of 5 to 
25 W. The exposures were reported to be either ineffective (at 5 
W) or deleterious, causing bone necrosis, fractures, and delayed 
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bone healing (at 10, 15, 20, and 25 W). The measured maximum 
temperature elevation in the bone was 31.7°C. Based on current 
knowledge [283,320,327], this clearly demonstrates that the 
exposures were causing thermal damage, thus negating any 
potential beneficial effect. Therefore, it is not a surprise that at 
the time therapeutic ultrasound was seen to have limited 
potential to stimulate bone healing. A more extensive review of 
the early days of therapeutic ultrasound on bone can be found 
from Schortinghuis et al. [286]. 

In later studies, thermal effects were mitigated through the 
use of low-intensity CW or pulsed sonications, and positive 
impacts on fracture healing were reported. The exposure 
conditions for these studies are detailed in Table 3.1. In 1983, 
Duarte [59] reported accelerated callus formation and fracture 
healing in rabbit fibula and femur after pulsed low-power 
ultrasound exposure. The sonications were executed with short 
bursts (5 μs) and low (0.5%) duty cycle (dc), and the two tested 
operating frequencies were equally effective. The measured 
temperature rise in the bone was only 0.01°C.  In that same year, 
Dyson and Brookes [71] sonicated rat fibula fractures in 
different stages of healing. The study suggested that ultrasound 
was the most effective during the inflammatory phase and soft 
callus formation. This typically translates to treatment given 
during the first two weeks after the fracture. When the 
treatment was given only during the hard callus formation stage 
(weeks three and four), bone healing was impaired and 
accelerated cartilage formation was observed. Sonications at 1.5 
MHz were reported to be more efficient than at 3 MHz (78.6% vs. 
56.2% improvement in repair). Acceleration in fracture healing 
in rabbit legs (17% acceleration, 168 days vs. 203 days) was 
reported by Klug et al. using low intensity CW sonications [162].  
A few years later, Pilla et al. reported 1.7-fold (17 days vs. 28 
days) acceleration in rabbit fracture healing (ultimate bone 
strength) after low-intensity pulsed ultrasound treatments [257–
259]. A temperature rise of 0.1°C was measured from the 
osteotomy site. In the study by Wang et al., 0.5 MHz and 1.5 
MHz operating frequencies were compared in rat femoral 
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fracture models [338]. The authors reported that pulsed 
ultrasound treatment with average intensity, ISATA = 30 mW/cm2, 
significantly increased (22%) the average maximum torque of 
the fractures measured 21 days after the operation. Both of the 
tested operating frequencies were equally effective. However, 
the stiffness of the fracture site was statistically increased (67%) 
only at 1.5 MHz. Two years later this same group, using a 
similar fracture model and ultrasound configuration, reported 
that at 0.5 MHz statistically significantly increases in the 
fractures’ maximum torque (30%) and maximum stiffness (37%) 
[357] could be achieved at an intensity of ISATA = 50 mW/cm2. A 
higher 100 mW/cm2 intensity also elevated these parameters, but 
not in a statistically significant fashion (p > 0.2). Furthermore, 
aggrecan gene expression in ultrasound-stimulated (50 mW/cm2) 
fracture calluses was higher than in the non-sonicated calluses 
seven days after the operation (during the ultrasound treatment 
period), while it was lower several days after ultrasound 
treatment had stopped. The authors suggested that the 
mechanism for improved fracture healing was the acceleration 
of chondrogenesis and cartilage hypertrophy, resulting in 
accelerated endochondral ossification. 

In 1994, after a decade of studies, the United States Food and 
Drug Administration approved a clinical device (Exogen®) for 
the treatment of fresh fractures (treatment initiated within seven 
days post-fracture) in skeletally mature individuals. In 2000, the 
device was approved for use with nonunion fractures, excluding 
skull and vertebrae. The battery-powered and patient-operated 
device uses the same acoustic parameters that were first 
introduced by Xavier and Duarte (as cited by [257]) and more 
generally applied by Pilla et al. [257–259]. The current device has 
a circular planar transducer with an effective radiating area of 
3.88 cm2 and a beam non-uniformity ratio of four [300]. The 
transducer is directly coupled to skin using acoustic coupling 
gel, resulting in near-field exposure of the soft tissue–covered 
bone. The device is generally assumed to have a minimal 
thermal effect on tissues due to the moderate operating 
frequency (1.5 MHz), diagnostic level average intensity (ISATA = 
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30 mW/cm2 with 1 kHz PRF and 20% duty cycle, 20 minutes 
daily), and low temperatures measured in in vivo animals [259] 
for a similar device. 

Several clinical studies have applied this device. Heckman et 
al. reported 38% acceleration (96 days vs. 154 days) in healing of 
human tibial cortical fresh fractures [123]. Kristiansen et al. 
reported similar results in human radial cancellous bone 
fractures [172]. Accelerated healing has been reported also in 
other bone trauma treatments techniques [62,103,246].  However, 
sonication has also been reported to be ineffective with fresh 
fixed tibial fractures [81] and stress fractures [273]. 

In the case of delayed unions and nonunions, a retrospective 
analysis of ultrasound-treated patients implied that low-
intensity ultrasound could result in up to a 91% success rate for 
delayed unions and an 86% success rate for nonunions [211]. A 
recent study from Schofer et al. was the first randomized sham-
controlled trial dealing with delayed unions and showed a 34% 
increase in fractured tibial bone mineral density after LIPUS 
[285].  

Further animal studies have provided detailed information 
about the effects of sonications and have tested new applications 
for ultrasound bone therapy. The Exogen® device and the 
acoustic parameters it uses have been studied the most.  
However, a wide variety of other exposure parameters have 
been explored as well in numerous studies. The animal and in 
vivo human studies are summarized in Tables 3-1 and 3-2, 
respectively in chronological, alphabetical order. 

Many of the animal studies have provided the foundation for 
ultrasound-assisted bone healing. The results of these studies 
have further encouraged the use of this technique for the 
treatment of various bone diseases and deficiencies and several 
clinical studies support the use of low-intensity ultrasound 
intervention for bone fractures. Though the ultrasound-induced 
fracture-healing acceleration in fresh fractures is significant, 
perhaps the largest potential for this intervention would be to 
treat impaired, diseased, or artificially engineered bones. 
However, recent systematic reviews of human trials concluded 
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that the evidence is still inadequate and that larger blinded trials, 
focusing on functional outcomes, that would verify the general 
efficiency of this fracture treatment modality are needed [28,107]. 
In Finland, the medical experts have given similar 
recommendations [3]. 
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3.5 STIMULATION OF IN VIVO CARTILAGE 

Osteoarthritis is the most common joint disease, which slowly 
but progressively deteriorates the cartilage and underlying bone 
[11]. The most common osteoarthritic joint is the knee, and it is 
estimated that in Finland, the age-adjusted prevalence of knee 
osteoarthritis in individuals over 30 years of age is 
approximately 5% in men and 7% in women [2]. Its prevalence 
increases rapidly with age, being 9.2% and 8.1% for men and 
women near the age of retirement (55–64 years), respectively. 
Similar statistics have been reported internationally [11]. Several 
surgical and tissue engineering-based methods are developed to 
repair articular cartilage defects [210]. 

Several animal studies have reported favorable ultrasonic 
effects on cartilage [49,50,53,65–
67,76,109,133,134,227,251,334,366]. Ultrasound bone-healing 
studies have also noted changes in cartilage and chondrocytes. 
Dyson et al. found an increase in elastic cartilage in rabbit ears 
using a novel tissue regeneration device [65–67]. The optimal 
settings induced a 32.5% increase in tissue growth area and 
were achieved using 3.5 MHz pulsed ultrasound. Continuous 
wave sonication (ISATA = 0.1 W/cm2) was nearly equally as 
effective as this pulsed ultrasound mode. However, sonication 
using this same temporal-average intensity but higher pulse 
intensity (increased intensity, decreased PRF and dc) was 
regeneratively ineffective or even inhibitory. All intensities gave 
a similar temperature rise (1.3 to 1.6 °C). Following their studies, 
many animal studies were conducted demonstrating benefits 
from sonications, particularly on osteoarthritic cartilage. These 
studies are summarized in Table 3-3. However, in a study by 
Chow et al., growth and activity in a cartilage cell pellet that was 
placed to treat a physeal bone fracture was not enhanced after 
the daily sonications [43]. Further, the results from studies that 
maturate and grow tissue-engineered chondrocyte constructs in 
vivo have been conflicting [53,61]. This may be explained by the 
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differences in biological setups and ultrasonic exposure. In a 
study by Lyon et al. [198], the efficacy of therapeutic ultrasound 
(1 MHz, unspecified intensity 0.5 W/cm2, pulsed but not 
specified, 20 min daily for six weeks) and of higher-intensity 
ultrasound (2.2 W/cm2) was compared by sonicating the normal 
cartilaginous growth plate in rabbit knee. The therapeutic level 
was ineffective. Contrary to this, the higher-intensity 
experiment showed significant cartilage thickening in the 
different zones of growth plate even though disorganization of 
the chondrocytes and bone resorption were also evident. This 
suggests a difference in effective sonication parameters between 
cartilage and bone. 

Based on the success in the animal experiments, conventional 
soft-tissue ultrasound physiotherapy (several watts of acoustic 
power) was used in effort to alleviate the symptoms of 
osteoarthritis [82]. Based on the acoustic parameters, these 
exposures are expected to induce at least thermal effects on the 
innervated subchondral bone, tendons, and cartilage. Recently, 
human trials have indicated both pain alleviation and functional 
improvements after CW sonications (1 MHz, 1–2 W/cm2, 
intensity not specified, transducer diameter 4–5 cm, five- to ten-
minutes-long treatments repeated daily 10 to 24 times) [248,319]. 
Tascioglu et al. further reported that pulsed ultrasound (1 MHz, 
2 W/cm2, PRF not mentioned, dc = 20%) was more therapeutic 
than CW with 2 W/cm2 [319]. In a study by Huang et al., pulsed 
ultrasound (1 MHz, spatial-peak temporal-peak intensity ISPTP = 
2.5 W/cm2, PRF most likely 100 Hz, dc = 25%, five-minutes-long 
treatments to several locations, three times/week for eight weeks) 
combined with muscular exercise increased the functional knee 
parameters more than CW ultrasound (ISPTP = 1.5 W/cm2) with 
exercise or exercise alone [135]. The intensity level was adjusted 
based on the level at which the patients felt warmth or a mild 
sting. These corresponding temporal-average intensity levels 
were lower with pulsed ultrasound than CW.  

Ultrasound’s superior effectiveness over the other 
physiotherapeutic modalities, such as heat packs or exercise, has 
not been confirmed in all studies [32,82,330]. Recent reviews 
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have concluded that there are supportive data on pain and 
function improvement after the ultrasound intervention but also 
that the current evidence behind therapeutic ultrasound on knee 
osteoarthritis is inadequate, requiring controlled 
methodologically improved studies [192,274]. Recently, the 
authors of this latter review conducted a double-blinded, sham-
controlled, randomized pilot study utilizing pulsed ultrasound 
(1 MHz, ISATA = 0.2 W/cm2, PRF not mentioned, dc = 20%, 9.5 
minutes three times/week for eight weeks), and reported a 
statistically significant increase (1700±160 μm vs. 1640±170 μm, 
mean increase 90 μm) in tibial cartilage thickness but found no 
effect on pain or physical function among patients suffering 
from mild or moderate knee osteoarthritis [193]. 

In general, soft tissue and bone encases the cartilage in the 
joint and therefore, allows only a limited window for ultrasound 
to directly propagate into cartilage surface [351]. Planar 
transducer devices designed for muscle tissue, tendon, or bone 
healing may not be the optimal configurations to deposit a 
moderate or low average intensity ultrasound, specifically in 
cartilage-space. An efficient deposition may require altered 
sonication parameters, beam steering, beam focusing, and image 
guidance and/or active control. 
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3.6 STIMULATION OF IN VITRO BONE AND CARTILAGE 

In vitro studies have provided the biological basis for bone and 
cartilage stimulations. Studies using bone and stem cells have 
reported elevated levels of collagen, alkaline phosphatase, 
osteocalcin, and several other bone-specific markers indicating 
that ultrasound has an enhancing effect on bone cell function 
and differentiation. More specifically, studies have indicated 
that ultrasound can influence prostaglandin E2 and 
cycloaxygenase-2 levels [165,277,309,310], elevate the levels of 
nitric oxide [268,337], affect several cytokines [57,337], regulate 
the cell surface integrins [315,316,360], and activate matrix 
metalloproteinase’s [39,332]. The effect of ultrasound on cell 
proliferation has been conflicting. Table 3-4 summarizes 
reported findings. In cartilage and chondrocyte studies, 
sonications have been reported to stimulate chondrogenic 
activity, maintain and enhance chondrogenic phenotype, and 
enhance the differentiation of stem cells to chondrocytes. Parvizi 
et al. have shown that calcium ion influx inside the cells 
contributes to proteoglycan synthesis and also that presence and 
release of intracellular Ca2+ is required for an increased synthesis 
in the sonicated chondrocyte monolayer [252]. Mortimer and 
Dyson, using fibroblastic cells, were the first to report elevated 
Ca2+ levels in cells after ultrasound [222]. In mammalian ovary 
cells, Kumon et al. have shown that signals emanating from the 
immediately sonoporated cells may activate the adjacent cells 
for delayed additive Ca2+ influxes through so-called “calcium 
waves” [173,174]. Elevated glycosaminoglycan levels 
[131,220,250] and cell surface integrin activation [41,42,130] have 
been reported after the sonications. Table 3-5 summarizes the 
reported effects on the cartilage cells and cell structures. 

Tissue engineering uses chemical and physical stimulations 
to grow tissues [206]. A recent study that compared ultrasound 
to a rotating-type bioreactor suggests that ultrasound by itself 
could serve as a bioreactor [131], or ultrasound could be 



 

Dissertations in Forestry and Natural Sciences No 172                      45 
 

implemented as a part in a larger, more complex bioreactor 
system. Kang et al. [155] have tested a system that combines 
cyclic strain and LIPUS on 3D pre-osteoblast scaffolds. The in 
vitro data can provide information about the optimal sonication 
parameters, optimal sonication setups, and co-play with the 
other stimulants for tissue-engineering systems. 
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4 Ultrasound Exposures: In 
Vitro Bone and Cartilage 
Studies 

4.1 ULTRASOUND INTERACTIONS 

As introduced in Chapter 2, ultrasound can affect cells and 
tissue via various thermal and mechanical, non-thermal 
mechanisms. Mechanical interactions include radiation force 
through sound absorption or reflection, acoustic cavitation, 
acoustic streaming, standing-wave induced radiation forces, and 
microstreaming. Additional interactions include mode-
converted waves, in the case of acoustic discontinuities; 
electromagnetic effects, in the case of electrically active targets; 
and the presence of electromagnetic interference. These 
interactions are dependent on the amplitude, frequency, and 
geometry of the acoustic beam and physical properties of the 
target tissue.  In this section, specific effects induced by the 
various mechanisms are reviewed. 

4.1.1 Temperature elevation 
One of the physical changes associated with ultrasound 
exposure is temperature elevation. Elevated temperature 
resulting from ultrasound exposure has been extensively 
studied, especially in the case of fetal diagnostic ultrasound due 
to possible adverse teratogenic effects [1,4]. Ultrasound-induced 
hyperthermia, alone or in combination with other therapies, is 
an efficient method to generate cell-destructive responses [56]. 
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Based on current knowledge, it has been stated that in vivo 
temperature elevations less than or equal to 2°C above body 
temperature, for up to 50 hours, are safe in postnatal subjects 
[243]. 

It has been known for a long time that small temperature 
changes (1–2°C) can alter the human fibroblast collagenase 
enzyme activity in vitro [349]. Moderate temperature elevation 
and resulting heat stress have also been reported to cause 
beneficial effects on various cell types [249]. Studies have 
indicated beneficial responses of bone and cartilage cells after 
mild heat exposure. Transient exposure to mild hyperthermia 
has been reported to induce cyclin D1 synthesis in fibroblasts 
(39–43°C for 40 minutes) [110], enhance differentiation of bone 
marrow stromal cells and human osteoblastic MG-63 cells (39–
41°C for 60 minutes) [298], and enhance differentiation of 
human mesenchymal stem cells to osteoblasts (41–42.5°C for 60 
minutes) [241]. In chondrocytes or chondrocyte-like cells, mild 
(39–41°C for 15 or 30 minutes) hyperthermia has been reported 
to improve cell viability and proteoglycan synthesis [128], while 
higher level (48°C for 10 minutes) [362] hyperthermia has been 
reported to impair these. Culture media conditioned by heat-
shocked (42°C for 60 minutes) human fetal osteoblasts induced 
osteogenesis of rabbit bone marrow–derived mesenchymal 
stromal cells [361]. Thermal stress conditioning (four or eight 
minutes at 44°C) of pre-osteoblastic cells prior to the 
administration of osteoinductive growth factors has been 
reported to stimulate several bone-specific markers and up-
regulate vascular endothelial growth factor protein levels [44]. 

In a recent study utilizing human mesenchymal stem cells, 
the cells were seeded inside a 3D cell matrix and placed inside a 
heated (41°C) cell culture incubator for one hour once a week, 
for up to four weeks [35]. These heated-air hyperthermia 
treatments were found to both accelerate stem cell 
differentiation towards bone cells, and also to enhance the 
maturation of these cells to bone cells. 

It is believed that heat shock factors and heat shock proteins 
(HSP) have an important role in these effects [249]. These 
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proteins are formed when the cells are subjected to stresses, 
including heat, and protect the cells from protein unfolding. 
There are also indications that HSPs serve as thermosensitive 
markers on the cell membrane and take part in increased plasma 
membrane fluidity. The HSPs that seem to be activated without 
protein denaturation are considered possible therapeutic targets 
[301]. In the study by Huang et al., the calming and repairing 
effect of repeated ultrasound exposures on early-stage 
osteoarthritic rat cartilage was linked to elevated levels of stress 
protein after the treatment [134]. Proteins aided the viable 
chondrocytes to survive resulting in chondrocyte proliferation 
at the follow-up period, and which was deduced to improve the 
condition of arthritic cartilage.  

In the case of in vitro sonications, ultrasound wave energy is 
absorbed mostly in the cell culture vessel structures, which are 
normally made of plastic materials (usually polystyrene or 
polypropylene). On a microscopic level, cells or collagen-rich 
tissue samples may also absorb the sound and contribute to 
elevated temperatures. 

4.1.2 Radiation force–based momentum transfer and motion 
Direct evidence of a radiation force–induced bioeffect came 
from a study by Mihran et al. [215]. In the study, relatively short 
(500 μs) high-intensity (100–800 W/cm2) ultrasound (2, 4, and 7 
MHz) bursts were focused on excised frog sciatic nerve placed 
in an in vitro exposure chamber. The single bursts were 
observed to either temporally enhance or suppress the nerve 
action potentials. Similar effects were seen using a direct 
mechanical stimulus having comparable duration and 
amplitude. Displacement amplitudes may be estimated to be on 
the order of micrometers [237]. The nerve bulk heating was 
estimated to be insignificant. The exposure was more effective at 
higher operating frequencies (given constant energy and burst 
length). The bioeffect was frequency-independent when the 
results were calculated as a function of energy attenuated in the 
target at each frequency. A 2 MHz electrical RF pre-stimulus 
had no effect. Thus, it was suggested that the bioeffect on nerve 
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action potentials is due to the radiation force acting on stretch-
sensitive ion channels of the nerve membrane. 

In the LIPUS treatments, a dynamic force is created at the 
PRF, which is conventionally 100 Hz or 1 kHz. The amplitude of 
the particle motion for Exogen® LIPUS parameters is on the 
order of a nanometer (particle velocity 1–1.2 μm/s) in the edges 
of bone fractures and approximately four-times larger in 
tissue/fluid space between the fracture ends [106]. The values 
were measured in a fractured cadaveric human forearm using a 
laser vibrometer (fractured arm between the transducer and 
vibrometer). In a recent review, radiation force was suggested as 
the likely mechanism behind bone fracture healing [46]. 

There is a relatively limited amount of data that directly 
compares the different pulse parameters in tissue regeneration. 
In an early study of Dyson et al., CW sonications and pulsed 
sonications at 100 Hz were compared (ITA constant) [65]. Both 
modes were found to regenerate rabbit ear tissue, while pulsed 
sonications were marginally more effective. In other in vivo 
studies [59,259], the pulsed mode was chosen and applied, as it 
is less likely to cause heating or cavitation compared to CW.  

In vitro studies of Wiltink et al. [352], Hsu et al. [131], and Hsu 
et al. [132] have used pulsed and CW modes and reported that 
pulsed (PRF = 100 Hz) sonications are more effective in 
stimulating bone-length growth, increasing chondrocyte 
number, and forming higher mineralized bone matrix and 
denser mineralized nodules in neonatal rat calvarial tissue, 
respectively. Argadine et al. have shown that 20% duty cycle 1 
kHz sonic square waves that were generated using acoustic 
speakers resulted in similar chondrocyte stimulation as the 
Exogen® signal [12]. The authors further reported that the 
amplitude of the motion was 4 nm for both devices, in a near-
field setup. This strongly suggests that radiation force is one of 
the cell stimulating mechanisms. As noted by Marvel et al. [208], 
the current commercial systems are not flexible enough to vary 
and compare the different pulsing parameters. In his study, 
three different PRF frequencies at a constant 20% duty cycle 
were compared using a custom-made ultrasound device and 
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stem cells in a near-field configuration. The authors reported 
that a PRF of 1 kHz was more effective than 100 Hz or 1 Hz.  

4.1.3 Cavitation 
A myriad of studies have shown ultrasound cavitation–induced 
bioeffects. Extensive reviews of bioeffects, setups, and 
parameters affecting inertial cavitational effects can be found 
from Miller et al. [217]. Apfel and Holland, and recently Bader 
and Holland, have created models to estimate the thresholds for 
cavitation [8,16]. The threshold for inertial cavitation in the 
presence of free bubbles is given by mechanical index (MI), that 
is defined: MI = p-/f1/2 where p- is the peak rarefactional pressure 
in MPa and f, the frequency in MHz. The cavitation index (ICAV) 
for stable cavitation (bubble rupture and subharmonic emissions) 
in the presence of contrast agents, is defined as:   ICAV = p-/f. 

As indicated by Miller et al., (inertial) cavitation is a highly 
variable effect, affected by many parameters [217]. Sacks et al. 
have found that cells in spheroids are more tolerant to 
cavitational effects than cells in a monolayer [276]. In blood, 
tonicity and dissolved gas contents have been found to affect 
blood cell hemolysis [218,219]. Sonoporation of mammalian cells 
is more efficient at body temperature than at room temperature 
[159,364]. Temperature elevation (from 37 up to 45°C) has been 
found to induce cell-type dependent variations in sonoporation 
efficiency in cells exposed to high-pressure laser-induced stress 
waves [322]. 

Forbes et al. have shown that inertial cavitation is not 
required to sonoporate ovary cells in presence of gas bubbles 
[85]. Sonoporation is assumed to be due to the stable, linear 
and/or nonlinear bubble oscillations that result in 
microstreaming. Krasovitsky et al. have suggested a cell model 
that could explain many of the ultrasound bioeffects at low 
pressures, and in the absence of contrast agents [171]. In this 
bilayer sonophore model, the space between cell membranes 
expands and contracts in phase with the ultrasound wave 
generating small-amplitude motion inside the cells. 
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Evidence that cavitation has a role in therapeutic activity can 
be found from studies of Webster et al. [347,348]. Fibroblastic cell 
suspensions were sonicated with or without elevated ambient 
overpressure. Artificial bubbles were not used. When the 
pressure of the cell chamber was at normal ambient pressure, 
the protein synthesis of treated cells was 127.2% compared to 
sham-sonicated cells (100%). When the ambient pressure was 
elevated by 2 atm, the syntheses were 109.7% and 111.8% for the 
sonicated and sham-sonicated cells, respectively, relative to 
control cells at normal ambient pressure. Wang et al. have found 
an increase in silica-coated 8 nm nanoparticle intake by 
osteosarcoma cells after the Exogen® treatment [339]. The intake 
increased when the sonication time was extended (3 h > 1 h > 0.5 
h). Harle et al. measured the presence of subharmonic noise 
during the bone cell exposures using a hydrophone as a passive 
cavitation detector [116]. Their data indicated that the 
subharmonic emissions (f/2 = 1.5 MHz) were present only at the 
highest intensity level (3 MHz, ISATA = 1.78 W/cm2, CW). The 
highest therapeutic effects were also evident at this level. 
However, the gene expressions were also elevated with lower 
intensities, which excluded the subharmonic emissions, 
indicating that cavitation above the detection of sub-harmonic 
signals is not the sole cause for stimulation. 

Though ultrasound contrast agents are not used in studies of 
this field, the presence of natural air bubbles in the culture 
medium is likely, as the medium is not routinely degassed 
before sonications. In the study by Zhang et al., water inside an 
acoustic waveguide as well as the medium covering the bone 
cells were both degassed before exposing osteoblastic cells to 
low PRF (0.5 Hz) high-pressure bursts (f = 3.3 MHz, burst 
duration = 300 ms, p- = 9.18 MPa) using a novel optical 
microscope setup [367]. Degassing may have been one 
important factor in this experiment that enabled a stimulatory 
effect on cells without inducing cell death, despite the 
substantially high negative pressure and long burst duration.    
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4.1.4 Standing waves  
The two commonly applied temporal sonication modes in 
LIPUS studies are PRF = 100 Hz at 1 MHz operating frequency 
and PRF = 1 kHz at 1.5 MHz operating frequency, with both 
using a constant 20% duty cycle. These result in temporal burst 
lengths of 2 ms and 200 μs, respectively. In water these 
correspond to single-burst spatial lengths of 3 m and 0.3 m, 
respectively. In a standard six-well cell plate (area = 9.62 cm2) 
one milliliter of medium volume equals approximately 1 mm 
medium column height. Therefore, in the majority of the in vitro 
configurations (Tables 3-4 and 3-5), the sonication is effectively a 
near-field CW sonication. 

Kinoshita and Hynynen [160] conducted a controlled in vitro 
sonoporation using several experiments in which the standing 
wave was either induced or eliminated. The study indicated that 
ultrasound standing waves are required for high cell 
sonoporation efficiency with cells in monolayer. In earlier work, 
the cell viability in a cell monolayer seeded in a commercial 
polystyrene flask was regulated by placing the cells in either 
nodal or antinodal positions [256].  Thus, standing wave 
formation may be used to improve the sonoporation efficiency.  
In two recent papers from Garvin et al., spatial controlling of 
cells using standing waves has been applied for the purpose of 
tissue engineering [94,95]. In this method, cells in a suspension 
are collected and organized inside an extracellular matrix using 
standing waves. The cells are collected to the node positions due 
to the standing wave–generated radiation force on the cells. This 
matrix is then cured while maintaining the generated 3D 
structure. These continuous wave sonications are conducted 
using a configuration that is optimized for standing waves but 
resembles the setups that are routinely used in in vitro cell 
stimulations. Culture medium column height (5 mm) and 
acoustic pressure levels (100 kPa) are comparable to many 
LIPUS studies.  
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4.1.5 Streaming 
Evidence of the non-thermal effects of ultrasound can been 
found in in vitro studies that combine non-lethal ultrasound 
treatment and hyperthermic temperature, and result in 
increased cell death compared to hyperthermia alone [185,321]. 
Dunn [63] found similar cell survival curves as ter Haar et al. 
[321] when the cells were exposed to combined elevated 
temperature and shear stresses (0.7 to 8 dyn/cm2). Thus, bulk 
acoustic streaming was suggested as a non-thermal mechanism.  
Dyson et al. [66] suggested that the non-thermal mechanism 
behind tissue regeneration of in vivo rabbit ears was cycle-
averaged fluid movement. Harle et al. [116] have found elevated 
transforming growth factor gene levels in osteoblastic MG-63 
cells using a far-field configuration. The acoustic streaming 
ranged from 4 mm/s to 194 mm/s when ISATA ranged from 130 
mW/cm2 to 1770 mW/cm2 (3 MHz, CW). The gene inductions, 
which were observed with all intensities, were suggested to be 
due to the acoustic streaming.  In a study by McCormick et al., 
bone cells were first exposed to Exogen® LIPUS-treatment and 
then to a physiological level (19 dyn/cm2) shear stress in a near-
field setup [214]. The ultrasound treatment had an insignificant 
effect on bone markers (bone morphogenetic factor-4), cell 
morphology, or cell alignment. Shear stress was found to 
elongate the cells, change their orientation, and decrease the 
level of bone marker. However, when the shear stress was 
applied after LIPUS treatments, further decrease in bone marker 
level was observed.   

4.1.6 Wave mode conversion 
Mode conversion of longitudinal ultrasound waves to shear or 
surface waves occurs when the original wave meets an acoustic 
boundary. Several studies have shown that Lamb-type waves 
propagate at the surface of bone. Lamb waves have been 
generated in long bones in vivo [235] and in bone phantoms 
[58,263] using broadband ultrasound excitation. Propagation 
properties of these waves are studied as a diagnostic means to 
quantify bone status. In a recent study by Chung et al., which 
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applied the Exogen® system, the authors sonicated fractured 
bones of living rats at different angles of incident [45]. Fresh 
fracture healing and bone mechanical properties were 
significantly accelerated when the sonications were conducted 
at an angle of 35° instead of at the routinely applied normal 
angle of incidence (0°). The authors concluded that this angle 
(midpoint of θCR1 = 22° and θCR2 = 48°) enabled optimal shear 
wave induction and transmission to bone. In vitro, observations 
from Hensel et al. [124] indicate that mode conversion at the cell 
culture well walls occurs when the transducer diameter is larger 
than the well diameter. As a result, the generated shear waves 
sum up at the center of the well, creating a local pressure peak. 

4.1.7 Electrical perturbations 
The work of Duarte [59], which forms the experimental 
framework for the LIPUS techniques in bone, suggests that the 
primary mechanism behind fracture healing is the direct 
piezoelectricity of bone (collagen) [89].  He theorized that 
ultrasound waves induce, through piezoelectricity, small electric 
voltages in the bone that stimulate the bone cells. Dry bone 
exhibits clear piezoelectricity but the electrical properties of wet 
(in vivo) bone and cartilage, which lacks the similar-patterned 
collagen structure of bone, have been under debate [5]. It is 
suggested that the bone electricity, or strain, generated 
potentials could be a combination of fluid streaming potentials 
and piezoelectricity [5]. Pilla has observed that ultrasound 
induces altered ionic permeability in bone cells [257]. The bone 
cell impedance was found to be altered after an ultrasound 
exposure comparable to that of the Exogen® system. He has 
suggested that the microstreaming of ionic fluids could result in 
streaming potentials inside the bone structures and in cells, 
creating an endogenous electric field [260]. This could explain 
the similarities among the bioeffects and temporal wave 
characteristics of ultrasound and electric/electromagnetic 
treatments (≈ mT magnetic flux bursts consisting of high 
frequency content repeated at tens or hundreds of Hz). 
However, few studies have actually compared electromagnetic 
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and LIPUS stimulations [25,189]. These in vitro studies have 
indicated a fairly similar response in bone cells, though the 
electrical methods have required much longer (2–3 h) exposure 
times. 

Several commercial plastic materials can generate measurable 
voltages under elongation or bending, including polystyrene 
and polypropylene [93]. In a method called acoustically 
stimulated electromagnetic (ASEM) response, an 
electromagnetic signal is generated on a sample that is probed 
with short broadband ultrasound pulses and picked up by an 
external RF-antenna [144,245]. Small signals have been received 
from wet bone and a thin polystyrene plate. Substantially 
stronger (≈ ×250) electric signals are found when the probed 
sample is a piezoelectric crystal. In a silicon plate the signal is 
absent. Studies further indicate that the strongest 
electromagnetic pulses are generated when the transducer is 
switched on, or when the reflection of the sound from the 
sample returns to the sonicating transducer, indicating 
transducer generated electrical signals. The impact of these 
transducer generated electrical signals were investigated by 
Dyson et al. [65], who commented that the electromagnetic 
interference significantly complicated the temperature 
measurements during CW in vivo tissue regeneration. In the 
study by Pilla et al. possible effect on bone fractures of electric 
noise from the transducer at Exogen® parameters was directly 
explored [258]. By replacing the acoustic gel coupling layer with 
an air layer, the acceleration of rabbit fracture healing was lost. 
This indicates that ultrasound needs to enter tissue to have an 
effect, and that the electromagnetic signal alone does not have a 
noticeable impact on healing. As suggested by Dyson et al. [65], 
the possibility of RF pick-up could be eliminated by using RF-
shielding of the transducer and driving electronics [314]. 
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4.2 IN VITRO EXPOSURE CONFIGURATIONS 

Among the in vitro studies, the ultrasound exposure 
configurations have varied substantially, as indicated in Tables 
3-4 and 3-5. To simplify the overview of these setups, the 
applied ultrasound systems are categorized into four 
generalized types (Fig. 4.1). Similar classification can be found in 
the review by Miller et al. [217] and in the study by Hensel et al. 
[124]. 

 

 

4.2.1 Immersed transducer and sample 
In the first experimental setup (Fig. 4.1A), the cell chamber 
containing the biological sample and the transducer are both 
immersed in water. This type of setup with cells in suspension 
was used in studies [222,347,348], which inspired many later 

 

Figure 4.1. A schematic illustration representing four different ultrasound 
exposure systems applied in vitro: (a) immersed transducer and sample, (b) 
immersed transducer with absorption chamber, (c) transducer in the sample 
volume, and (d) sample on top of the transducer. 
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ultrasound in vitro studies in this field. This setup has many 
favorable aspects. First, the transducer-sample distance can be 
set so that cells are exposed in a uniform and repeatable acoustic 
field. Second, to exclude standing waves, the cell chamber faces 
can be made acoustically transparent using thin plastic films. 
After passing the sample volume, the transmitted sound can be 
effectively silenced by simply covering the water tank walls 
with rubber mats or specialized acoustic absorbers. Due to the 
lack of strongly reflecting interfaces, these setups have the 
lowest radiation force momentum change and motion. Third, 
full immersion enables accurate temperature control and 
efficient removal of ultrasound-induced heat from the chamber. 
Therefore, the reported temperature elevations have been less 
than 1°C [115,187,222,342]. 

A similar design was later used by Wiltink et al.  [352] with 
rat bones, Warden et al. [342] with a bone cell monolayer 
adhered to a 19 μm thick Mylar sheet window, and Sun et al. 
[309,310] with rat bones and bone cells placed inside a urethane 
chamber. 

Cells in commercial cell chambers have also been exposed 
using this setup. Harle et al. [114–116] have used polystyrene cell 
bottles without modifications and Mukai et al. [224] used plastic 
cell tubes containing the cell aggregate at the conical tip of this 
tube. The latter system consisted of six transducers and six tubes 
placed 3 cm from the transducers.  

Though having several advantages, this type of setup has 
been used in only a few studies. There may be several reasons 
for this. First, a cell chamber that is completely or nearly 
completely immersed has an elevated risk for cell contamination 
during exposure. Second, the configuration requires larger 
culture medium and reagent volumes than normal culturing, 
making it costly. Third, to enable optimal sound transmission, 
the cell chamber must be modified by making acoustic windows. 
Finally, the acoustic window may not be an optimal surface for 
cell adhesion. 

Repeatable acoustic exposures are also possible by using 
special sound absorption chambers (Fig. 4.1B). By placing the 
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chamber directly into the culture volume, the standing waves 
within the exposure volume can be significantly reduced 
[175,187–189]. As with type A setups, studies using absorption 
chambers have reported low temperature elevations after 
ultrasound treatments. In the setup, a liquid-filled chamber 
containing small absorption particles is coupled to culture 
medium using a thin film window. The transducer positioned in 
far-field is rotated to increase the exposure area and eliminate 
standing waves between the transducer and plate. Solid, 
silicone-based chambers, for example, have also been 
introduced [18,145,146,148,163,165]. This setup type shares 
many advantages and disadvantages with the immersion-type 
systems (Fig. 4.1A).  

4.2.2 Transducer in the sample volume 
Perhaps the most intuitive way to sonicate the cells would be to 
immerse the transducer directly into the liquid sample volume 
(Fig. 4.1C). This technique also minimizes transmission losses 
between the transducer and cells. Therefore, it is no surprise 
that transducer immersion has been used in multiple studies 
(Tables 3-4 and 3-5; ‘C’). For example, a UK research group has 
used this approach in several studies [57,199,266–268]. The 
studies have experimented with MHz- and kHz-range 
ultrasound exposures. The transducer immersion into the cell 
chamber is a common feature among the studies, but several 
differences are also evident. For example, in the kHz-range 
studies, the well plates floated on the surface of temperature-
regulated water. In some studies, the cell chambers are exposed 
to air [6,122]. In the other the transmitted sound has been 
absorbed in castor oil–embedded absorbers [132,265], absorbers 
placed under the chamber [190,368,369], or reflected from the air 
under the well [242,315]. 

This sonication method is simple but it requires careful 
transducer sterilization before immersion. To eliminate the 
direct cell volume contact, Zhang et al. [368,369] have applied 
Parafilm membranes between the medium and transducer. 
Standing wave regulation is also challenging. A sub-wavelength 
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thick plastic membrane placed between the transducer and 
radiation force balance has been shown to cause errors in 
acoustic power measurements in general [21], and a shift in the 
resonance frequency [196] and acoustic output of physiotherapy 
transducers [212]. Therefore, standing waves present in a setup 
can directly regulate the sound amplitude that is delivered to 
the target. In addition, the absolute calibration of these 
configurations is highly demanding and in most cases has been 
inadequate. The in-situ calibrations using invasive hydrophones 
are susceptible to standing wave artifacts [140,167], which 
further complicates near-field calibrations. 

One significant obstacle is that in the case of large 
transducers [266] or small chambers, the complete transducer 
surface may be difficult to place in full liquid contact. In the case 
of a geometrically focusing (large aperture) transducer, a special 
waveguide [367] or high liquid layer above the plate is required. 
Some type of waveguide is also usually required to expose the 
sample to a spatially uniform acoustic far-field. In type C 
configurations, the temperature elevations have been found to 
be small, at least at lower acoustic intensities [132,242,265]. This 
configuration is, however, susceptible to heating due to the 
multiple reflections between the transducer surface and culture 
well bottom. A transducer that has a diameter comparable to the 
well diameter can also effectively block cooling from the free 
liquid surface. A specific low-frequency and low-intensity 
device (45 kHz and 25 mW/cm2) has been reported to generate 
substantial heating [203]. In this case, the source for heating may 
not be direct ultrasound absorption in the cell culture but the 
transducer surface heating [166,354]. 

4.2.3 Sample on top of the transducer 
During routine use of the Exogen® fracture treatment system, 
the transducer is coupled to the skin using acoustic coupling gel. 
In many ways, the in vitro exposure configuration illustrated in 
Fig. 4.1D is similar to the in vivo setup. This is also the most 
frequently applied in vitro ultrasound configuration (Tables 3-4 
and 3-5; ‘D’), especially in recent studies. In some studies, a thin 
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water layer has been used to couple the transducer to the cell 
chamber bottom [118,252,360], but in the vast majority of the 
studies, the transducer and the well have been coupled using an 
acoustic gel layer. In a recent study by Fung et al., rubber-gel 
blocks (c = 1400 m/s, otherwise unspecified) were placed 
between the transducer and the cell well with an acoustic gel 
layer between the transducer-rubber complex and the well [92]. 
In these experiments, the length of rubber block was varied 
from zero to 130 mm, which corresponded to the farfield 
distance for their system. The intensity of the exposure was 
calibrated so that it was constant (ISATA = 30 mW/cm2) at the 
location of the cell well regardless of the rubber thickness. This 
study found the highest bone cell-stimulating efficiency when 
the well was in the transducer farfield. 

This setup type is perhaps the most vulnerable to heating due 
to sound reflections, small culture medium volumes, and a 
limited cooling capacity. Few studies have reported insignificant 
culture medium temperature elevations with respect to the 
control cells in a setup using gel coupling [292,332]. Park et al., 
using the Exogen® device, have commented that with culture 
wells smaller than the transducer, the temperature was elevated 
above the physiological level, which increased the level of 
glycosaminoglycan staining of cell constructs mimicking an 
osteoarthritic tissue [250]. 

The most complex radiation force movement is generated in 
these setups. Commercial well plates have substantial acoustic 
attenuation, resulting in direct vibrations of the adhered cells at 
the burst repetition frequency. A large liquid movement is 
generated at the acoustically soft liquid-air interface. Reflections 
and the resulting standing wave fields within the exposure 
volume can further modify the radiation force and induced 
motion [21]. Hensel et al. [124] have reported that in a type D 
setup, a medium volume variation of 2.56% (total volume 13 ml) 
can change the pressure at the cell layer by a factor of two. 

The type D setup, having a low culture medium column with 
standing waves, may form favorable circumstances for 
cavitation by enabling the bubbles to be close to the cells. 
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Kodama et al. transfected reporter genes in hamster cells using 
near-field standing wave sonications with gas bubbles (1 MHz, 
p- = 0.23 MPa, PRF = 100 Hz, dc = 20%) [164]. The highest 
luciferase activity and the lowest survival fraction were 
observed when the culture medium height was 1 to 2 mm, 
which correlated well with the wavelength of 1.5 mm. 

Though acoustic streaming varies substantially in the 
acoustic near-field, it is concentrated to the transducer focal area 
[305]. Direct measurements from Spengler et al. [303] indicate 
that acoustic streaming can be attenuated if the free liquid 
volume is limited by using acoustically transparent films. 
Successful cell manipulation using standing waves further 
indicates that standing wave-generated microstreaming may 
dominate over bulk acoustic streaming in these setups (also in 
type C). Consequently, there may be a large variation in acoustic 
streaming values among experiments, depending on the 
acoustic parameters and the setup details. 

Though the acoustic exposure is difficult to calibrate in this 
configuration due to the potential for various sound interactions 
(Fig. 4.2), it is simple, rapid to adopt in routine cell culturing 
protocols, and presents perhaps the lowest cell contamination 
risk. 
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5 Summary of the 
Publications 

The main results of publications I to V are summarized in this 
chapter. The applied Materials and Methods can be found in the 
original publications.  
 
Publication I. The efficacy of ultrasound (setup type A, f = 1 MHz, dc = 20%, 
PRF = 1 kHz, ISATA = 580 mW/cm2, 10 minutes daily for 1–5 days) to increase 
proteoglycan synthesis in bovine primary chondrocyte monolayer was 
studied. The contribution of ultrasound-induced temperature elevation (mean 
± SD = 6.9 ± 0.1 °C) to the synthesis was investigated using a water bath to heat 
the monolayer by the same amount, but in the absence of ultrasound. 
Proteoglycan synthesis was increased approximately twofold after three to 
four daily ultrasound exposures, staying at that level until day five. 
Temperature elevation alone did not increase proteoglycan synthesis. 
Ultrasound treatment did not induce Hsp70, while heating alone caused a 
slight heat stress response. The cells from one donor out of five were non-
responsive to ultrasound.  
 
Publication II. Human osteoblastic MG-63 cells were sonicated (f = 1.035 MHz, 
dc = 20%, PRF = 1 kHz, 30 minutes) using setup type B. The temperature 
elevations were 0.05, 0.18, and 0.72°C at acoustic pressures of 128, 256, and 510 
kPa, respectively. Using genome-wide microarray screening, altogether 377 
genes were found to be ultrasound-regulated at least by twofold. Ultrasound 
affected genes are involved with cellular membranes, regulation of 
transcription, plasma membrane solute carriers, and several transcription 
factors belonging to the zinc finger proteins.  
 
Publication III. From Publication II, it was observed that ultrasound impacts 
Wnt/β-catenin, which is a regulator of osteoblastogenesis. To further study the 
effect of ultrasound on Wnt/β-catenin signaling in MG-63 cells, the cells were 
exposed to several ultrasound intensities (setup type D, f = 1.035 MHz, dc = 
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20%, PRF = 1 kHz, PTA = 0.2 to 2 W, 10 minutes), heat alone, and ultrasound at 
a lower baseline temperature. At PTA = 2 W activity was significantly 
stimulated (6 fold), while also resulting in an average temperature elevation to 
47.6 ± 0.9 °C in the cell well. Thermal exposures between 46 and 48°C alone 
increased the Wnt activity by 5 to 18 fold. The activity was lowered at 49°C (< 5 
fold). Sonication at the same intensity but having a lower baseline temperature 
(average maximum peak temperature reached 40.9 ± 0.7°C) showed 
stimulation of Wnt activity by 2.6 fold. The induction of Wnt in chemically 
pre-activated (lithium-chloride) cells was further stimulated by ultrasound by 
2.7 fold and by thermal exposure alone at 47°C by 4.2 fold. However, the 
ultrasound exposure at the low baseline temperature did not stimulate the 
cells that were pre-activated. The level of HSP70 was elevated after ultrasound 
treatments at normal baseline temperature and thermal exposure treatments.  

 
Publication IV. The temperature elevation in the setup used in publication III 
was measured using fine–wire thermocouples and infrared imaging. The 
measurements in a standard 24-well plate showed that temperature 
accumulation was highest at the polystyrene well walls, including the walls of 
the neighboring, non-sonicated wells. The heating in the centrally located well 
was higher than in the peripherally located wells. Wnt-specific TOPflash 
reporter activity in MG-63 cells after ultrasound treatment was significantly 
higher in the centrally located wells (6.3- to 11.5-fold induction) compared to 
the peripherally located wells (1.9 to 1.8 fold). 
 
Publication V. The acoustic and thermal exposure in the type D setup was 
characterized using pulse-echo ultrasound, optical methods, and 
thermocouples. Pulse-echo measurements indicated that the commercial 
polystyrene 6-well plate is susceptible to frequency-sensitive transmission 
(resonance frequency 938 ± 9 kHz at 37°C). According to the laser Doppler 
vibrometer measurements, 1-kHz PRF-induced radiation force displacements 
were significantly smaller (2–3 nm) but less frequency dependent than the 
displacements at the operating frequency (5–35 nm at 1.035, 1.625, and 3.35 
MHz). Wave mode conversion occurs on the plate, and Lamb waves having 
phase speeds 1111, 1110, and 1077 m/s at 1.035, 1.625, and 3.35 MHz, 
respectively, propagate on the plate. Nanometer-scale vibrations are coupled 
to the non-sonicated neighboring wells. Acousto-optic Schlieren 
measurements indicated that standing waves are formed inside the cell well, 
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resulting in up to a nearly 200 % variation in acoustic pressure amplitude in a 
well.  An exposure of cells in a D-type setup with typical LIPUS parameters 
caused a temperature elevation of 2.7 ± 0.3°C when using commercial acoustic 
gel coupling and 0.3 ± 0.2°C with circulating water coupling. 
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6 Discussion 

6.1 PUBLICATION I 

The proteoglycan synthesis of bovine primary chondrocytes 
after ultrasound treatment exhibited approximately a twofold 
increase relative to the controls. This finding indicates that 
ultrasound may be a feasible method to increase extracellular 
matrix production in cultured chondrocytes. There was a 
significant (6–7 °C) ultrasound-induced temperature increase 
inside the sonicated cell wells, but an induction of proteoglycan 
synthesis was not evident after the heat treatment mimicking 
this ultrasound-induced temperature elevation. Activation of 
Hsp70 was not observed after ultrasound treatment, but a slight 
increase was observed after hyperthermia treatment. Since the 
heat treatment alone did not increase proteoglycan synthesis in 
chondrocytes, our results indicate that in order to increase 
proteoglycan synthesis with ultrasound, some effect of 
ultrasound other than temperature rise is required. 

The level of the thermal exposure can be an important factor 
for proteoglycan synthesis. A one-time hyperthermia treatment 
at 48°C (approx. 4°C higher than in this study) for ten minutes 
causes apoptosis and suppression of proteoglycan synthesis in 
rat articular cartilage [362]. Hyperthermia treatment of HCS-2/8 
chondrosarcoma cells (41°C for 15 or 30 minutes) was found to 
have a positive effect on both the cell viability and proteoglycan 
synthesis rate, while the cell viability and metabolism were 
decreased after exposing the cells to 43°C or higher for 30 
minutes [128]. In our study, the cells experienced temperatures 
of 43°C or higher for only five minutes. 

Although the acoustic field distribution in the cell culture 
well was found to be non-uniform, the temperature values 
inside the well were relatively even. Multiple reflections from 
the liquid-air interface, and heat conduction, most likely 
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smoothed the temperature rise inside the well. The ultrasound-
induced temperature rise is fast and a similar temperature 
profile is difficult to create, for example, using a water bath. The 
water bath temperature profile used in our experiments was 
higher at all time points, but the difference was always under 
1°C. The difference in Hsp70 response between the 
hyperthermia and ultrasound treatments could potentially be 
explained by this difference in temperature. 

Chondrocytes collected from a single bovine were found to 
be unresponsive to ultrasound. A variation in responses has also 
been reported by others [13,169] and may further complicate cell 
manipulations.   

6.2 PUBLICATION II 

Previous studies investigating ultrasound interactions in bone 
cells have focused on a small group of genes or proteins. In this 
study, the first attempt was made to reveal whole genome-wide 
transcriptional events occurring in bone cells under certain 
types of ultrasound exposure. In addition, the cells were 
exposed using an ultrasound setup that enables the ultrasound 
exposures to be quantified while minimizing ultrasound 
induced temperature elevations in the cell culture medium. 

In the experiments, the cells were located in the acoustic far-
field beyond zLAM. The reflections between the cell plate and 
transducers were minimized using an absorption chamber, 
favorable transducer orientation, and continuous transducer 
movement. The ultrasound device geometry improved 
acoustical field uniformity, enabling more accurate ultrasound 
field calibrations and resulting in more repeatable cell 
exposures. 

One possible artifact in thermocouple measurements is the 
viscous heating of the thermocouple probe [87,88,141]. In this 
case the real medium temperature is overestimated due to a 
friction-generated rapid local temperature rise. The real 
temperature rise is thus likely smaller than the measured 
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temperature elevation of 0.4°C. Therefore, it is very likely that 
such a small temperature increase is not the primary bone cell 
stimulating factor in this study. 

The largest groups of affected genes were plasma membrane 
proteins and transporters, and transcription factors, especially 
zinc finger proteins. One explanation for changes in expressions 
of solute transporters could be a formation of pores on the 
plasma membrane, affecting the intracellular ion balance. Zinc 
has been shown to increase the activity of vitamin D-dependent 
promoters in osteoblasts [197], and a number of zinc finger 
proteins appear to be involved in osteoblastic differentiation 
[153]. Microarray analysis introduced several interesting 
ultrasound-regulated candidate genes that have a role in bone 
cell metabolism. Only a few studies can be found in the 
literature on BMP-2-Inducible Kinase (BIK or BMP2K), which 
has been shown to attenuate osteoblast differentiation [157]. A 
high expression of plasma membrane protein CD151 in 
chondrocytes has been shown to be a marker for high 
chondrogenic capacity [108]. Enhancer of zeste homolog 2 
(EZH2) [296], Homeobox B8 (Hoxb8a) [279], and low density 
lipoprotein receptor-related protein 5 (LRP5) [17,100] have been 
previously connected to the Wnt/β-catenin signaling pathway, 
an important regulator of bone metabolism. 

This study suggests that plasma membrane proteins and 
transporters, and a group of zinc finger proteins, are most 
sensitive to ultrasound-induced transcriptional regulation. This 
information may be important, uncovering the mechanisms of 
how ultrasound stimuli transmit their effects on the bone cells. 

6.3 PUBLICATION III 

To study the effects of ultrasound stimulation in bone cells, 
activation of bone-essential Wnt signaling pathway [37,99] was 
measured. To distinguish the thermal signal induction from the 
other ultrasound mechanisms, hyperthermia exposures using a 
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heated water bath and ultrasound exposures in a cooled water 
bath were conducted.  

The TOPflash reporter gene assays showed that ultrasound 
exposure activated the Wnt signaling pathway in human 
osteoblastic cells. Nuclear accumulation of β-catenin in 
ultrasound-treated cells very shortly after the exposure was 
further evident and confirmed the activation of the canonical 
Wnt pathway. When LiCl was added to pre-activate the 
pathway pharmacologically, a synergistic effect of ultrasound 
and LiCl was observed. Previously, Wnt target genes have been 
shown to be up-regulated to a greater extent by mechanical 
loading when the canonical Wnt pathway was pre-activated by 
the addition of Wnt ligand Wnt3A or by inhibiting GSK3β [269]. 

When the cells were exposed to hyperthermia, Wnt signaling 
activity showed systematic temperature dependence. 
Approximately half of the maximal induction could be inhibited 
by the Wnt co-receptor blocker, Dkk-1. As with the ultrasound 
treatments, a synergistic effect of LiCl and heat was observed. 
To the best of our knowledge, there are no previous reports on 
the heat-induction of Wnt signaling in bone. 

When the water temperature in the ultrasound bath was 
lowered to 30°C, the thermal dose was drastically lowered and 
the maximum temperature was less than 41°C at the highest 
acoustic power. With this cooled setup, the Wnt signaling 
pathway was again significantly activated. Since hyperthermia, 
with or without LiCl additions, could not induce Wnt activation 
until the temperature rose up to 44.7°C, the Wnt activation was 
not due to the temperature rise, but to some other mechanisms 
of ultrasound. However, ultrasound exposure excluding the 
thermal component and including LiCl pre-activation did not 
result in the synergistic effect, indicating a more likely co-
modifying role of ultrasound. Supporting our results, Takeuchi 
et al. also observed a small but significant increase in the nuclear 
β-catenin level in ultrasound-exposed articular cartilage [311].  

Despite the substantially elevated temperatures in ultrasound 
and hyperthermia experiments, the integrity of cell membranes 
was not compromised and the apoptotic markers did not 
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respond markedly at time points or conditions showing the Wnt 
activation. The observed induction of Hsp70 also indicates a 
normal stress response of the cells to the applied exposures. 
Some cell rounding was observed at higher temperatures. In 
MG-63 cells, hydrostatic pressure (4 MPa for 20 min) has been 
reported to cause recoverable cell rounding and Hsp70 
induction, but not cell death [119]. 

In this study, the highest ultrasound intensity (407 mW/cm2) 
was found to be the most efficient. This is in contrast to many 
previous studies showing the best results with lower intensities, 
ranging from 30 to 50 mW/cm2. The lower intensities (41–326 
mW/cm2) also slightly increased the Wnt activity, but it is 
possible that the administered short, single burst sonication was 
not sufficient for higher stimulation.  

The exact knowledge of how the ultrasound or thermal 
signals are mediated in the bone cells is not available. In our 
experiments, where the specific protein kinase inhibitors were 
used, the activity of TOPflash reporter suggested that both the 
PI3K/Akt and mTOR signaling cascades were, at least in some 
efficiency, involved in mediating the stimulatory effect of the 
ultrasound exposure, as well as hyperthermia in human MG-63 
cells. This agrees with the results of Takeuchi et al., who 
reported that ultrasound effects are mediated via PI3K/ Akt 
pathway in chondrocytes [311]. In general, in mammalian cells, 
Wnt signaling has been shown to proceed via components of the 
PI3K/Akt and mTOR signaling cascades [151]. The precise 
regulation of β-catenin is known to be required for fracture 
healing, as many Wnt ligands and receptors have been found to 
be selectively up-regulated during bone healing [36,299]. In 
patients with hypertrophic non-unions, osteoblasts showed 
down regulation of multiple vital signaling pathways, including 
Wnt pathway [127]. 

To conclude, this is the first study to report that ultrasound 
exposure activates Wnt signaling pathway in human 
osteoblastic cells. Specifically, this study suggests that Wnt 
signaling can be activated through temperature elevation using, 
for example, ultrasound energy deposition but also through 
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some ultrasound induced non-thermal mechanism. Our 
observations support the earlier hypothesis that ultrasound-
induced mild hyperthermia is a potential technique to stimulate 
bone tissue. A few in vivo animal studies have indicated that 
continuous (≈ 40°C for up to 44 days) or intermittent (43°C for 
45 minutes once or twice a week) hyperthermia has a favorable 
impact on bone growth after trauma [72,181]. The need for non-
invasive in vivo temperature evaluation should not limit its 
applicability. Specifically, soft tissue temperature adjacent to 
bone could be controlled using a magnetic resonance imaging–
based thermography [306]. 

6.4 PUBLICATION IV 

Ultrasound-induced temperature elevation is present to some 
extent in most in vitro setups. Infrared and fine-wire 
thermocouple temperature measurements indicate that the 
polystyrene chamber wall is the most susceptible to have 
increases in temperature during ultrasound exposures. In our 
measurements, the size of the transducer was larger than the 
diameter of the exposed chamber (also in Refs. [221,250,360]); 
therefore, the plastic chamber wall was directly exposed to the 
ultrasound field. This is analogous to the configurations in 
which the exposure area inside a larger vessel is decreased using 
a polystyrene ring to fix and immobilize the biological sample 
[265]. This is also representative of the setup where a 
polypropylene cell tube with a narrowing conical end contains a 
small cell pellet at the cone tip and is exposed to a wide 
ultrasound field [74]. There are many factors that may influence 
the temperature elevation. Another possible source of increased 
heating is when an efficient acoustic absorber is placed close to 
the cells. This type of absorber is typically placed on top of the 
cells, inside the well chamber, to attenuate standing wave 
formation [146,163]. If it is placed close to the cells it can be 
another possible source for increased heating. If sound cannot 
propagate freely after travelling through the biological sample, 
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the formed reflections between the transducer and well bottom, 
and transducer and reflecting surface (air), will amplify this 
heating.  Therefore, even if the intrinsic sound absorption and 
resulting temperature effects of relatively thin-walled (≈ 1 mm) 
polystyrene plastic cell culture plates may be generally small, 
the type of ultrasound setup may change this dramatically. 

Furthermore, different plastic materials have different 
ultrasound-loss factors. For example, polypropylene cell tubes 
may be less suitable exposure chambers due to the higher 
acoustic attenuation in polypropylene compared with, for 
example, polystyrene (21–41 Np/m vs. 59–210 Np/mm at 5 MHz) 
[291]. 

The floor structure of a commercial cell plate may not be a 
continuous flat plate, as the edges of the plates may contain 
open cavities. These cavities may be partly or completely filled 
with water. As a consequence, the wells located at the edges of 
the plate will have water in contact with their walls, but the 
center wells will only have contact to the water through their 
bottoms. The IR images demonstrated that the peripheral wells 
that experienced the greatest cooling had lower temperature 
elevations than the centrally located wells. In our setup this 
temperature variation resulted in unequal biological activation 
in different well chambers. 

Infrared imaging is a spatially accurate, non-invasive, and 
fast method to characterize complex ultrasound configurations, 
with respect to induced temperature elevations. The largest 
limitation is that the liquid immersed interfaces are not 
observed, only the superficial layer. If the exposure system is 
closed (i.e., requires opening before imaging), as in our case, 
convection through moving air and evaporation will lower the 
absolute temperatures. Different materials also have different 
emissivity factors, which affect the absolute temperature 
accuracy [247]. Therefore, using IR-imaging together with 
thermocouple probes creates an efficient method to characterize 
in vitro ultrasound systems. 

Perhaps the most widely utilized commercial ultrasound 
apparatus applied in the field of ultrasound tissue engineering 
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research is the Exogen® fracture healing device. This device, as 
well as corresponding manufacturer modified research devices, 
has been used in many studies, indicating similarity among 
studies with respect to ultrasound exposure level and its 
interpretation. The literature indicates that within studies, the 
nominal, undisturbed ultrasound output intensities [335,369] 
and exposure times [182,289] have varied. The level of culture 
medium inside the well insert may also influence the 
temperature rise through acoustic field alteration and the 
cooling effect of the liquid. Very low culture medium levels 
[313], “normal” levels [168,332], and high levels with varying 
sonication direction [368,369] have been applied. Considering 
this heterogeneity in parameters and setups, our results from 
this study imply that a simple temperature rise per acoustic 
intensity relationship cannot be given. Unfortunately, very little 
or no information regarding ultrasound-induced temperature 
rise is usually reported for experiments.  

As confirmed in our study, the variation in the temperature 
of the ultrasound-exposed cells can, indeed, reflect directly on 
the biological outcome. Therefore, in light of our results, we 
believe that to apply repeatable stimulations to biological tissue 
engineering material, a detailed temperature characterization 
and systematic exposure protocol are a necessity for in vitro 
ultrasound exposures.  

6.5 PUBLICATION V 

In publication V, several non-invasive measurement methods 
were applied to study the interactions within the sonicated 
plastic cell culturing plate. 

Commercial polystyrene culture plate wells are usually thin, 
and it can be estimated that sound loss in a 1.22 mm thick plate 
is approximately 4% (frequency range from 1–3 MHz) [345]. 
Respectively, the measured bulk reflection coefficient for 
polystyrene is 0.214 [139], indicating that the reflection of sound 
is the dominant cause for sound attenuation in polystyrene 
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culture plate. However, as our measurements confirm, the 
culture wells, and other wavelength-scale layers, have very 
strong frequency-dependent reflection coefficients. This further 
complicates the quantification of reflection-induced acoustic 
output variations. More importantly, frequency-selective 
transmission is present even if the reflections between the target 
and transducer are eliminated. The load inside the well, level of 
acoustic pressure, plate thickness variation, and structure of 
acoustic field will have an effect, especially in near-field 
exposures, on the reflections. The effect of a temperature 
increase from 20 to 37°C was found to have an approximately 
1% effect on resonance frequency. Our results suggest that the 
resonance effect may also be present with the cell culture inserts 
and should be analyzed to obtain accurate exposure conditions. 
Furthermore, with biological targets in contact with the plate 
bottom, at plate resonance frequencies the resonating bottom 
may, at least in theory, be a stimulating factor. To decrease the 
sound reflection (and absorption), thin-bottomed culture plates 
could be used [208]. Despite the fact that frequency-dependent 
transmission is well known and applied to measure the density 
of the liquids [126], to our knowledge the issue is not widely 
taken into account in in vitro ultrasound setups. 

Particle velocity profiles with three different operating 
frequencies were all found to be irregular in shape but relatively 
similar in magnitude. However, this similarity is partly 
misleading, as the corresponding particle displacements are 
inversely related to operating frequency and are largest at the 
lowest operating frequency. Contrary to this, the PRF-induced 
motions were nearly equal for all three operating frequencies. 
Although they were smaller than the operating frequency 
displacements, they were more uniform. The measured 2 to 3 
nm displacements are comparable with the 4 nm value reported 
for the Exogen® bone healing device [12]. The magnitude of the 
PRF-induced motion was found to be directly related to acoustic 
power. This motion is most likely induced by the radiation force 
mechanism. By comparison, with the PRF velocity profiles at the 
two other frequencies, the PRF velocity profile at 1.035 MHz 
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was more center-weighted and uneven. As 1.035 MHz is close to 
the resonant frequency of the well, while 1.625 and 3.35 MHz 
are close to antiresonance frequencies (frequencies with 
maximum reflection), our data proposes that the operating 
frequency may be an important factor in the distribution of 
radiation force–based PRF movement in cell culture plates. 

Both the laser vibrometer and Schlieren measurements 
verified that a standing wave is formed inside a sonicated cell 
culture well when a liquid-air interface acts as a reflecting 
surface. It was also observed that the liquid layer height cannot 
be used to directly compensate for the change in transducer-well 
separation or vice versa (constant water path length is 
maintained). The tomographic images also indicate that the 
radial structure of the acoustic field is different between the 
node-antinode positions in the near field. Therefore, our 
measurements suggest that the setups commonly used with in 
vitro studies are susceptible to large variations in ultrasound 
exposure. 

The laser vibrometer measurements indicated that transverse 
acoustic waves propagate across the well. Equations for shear 
and Rayleigh speeds [26], give values of 1128 m/s and 1055 m/s, 
respectively. Our measurements indicated phase speeds 
between these theoretically estimated speeds, and group speeds 
close to the Rayleigh speed when the wave propagation was 
recorded in an empty well. Therefore, the measured wave 
speeds and the wavelength-order thickness of the culture well 
imply that Lamb waves are generated at the well bottom when 
the directly sonicated well is water filled and the waves 
propagate along the bottom to the neighboring wells. 

To test if the transverse waves could propagate when the 
plate is under water, a similar measurement at 1.035 MHz was 
made by immersing the 6-well plate in approximately 130 mm 
of water. According to our measurements, a wave packet having 
group and phase speeds of 915 and 949 m/s, respectively 
propagated in the plate. At the center of the non-sonicated well, 
the displacement amplitude was calculated to be 3.0 nm. 
Therefore, our data indicates that the transverse surface waves 
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are generated from the immersed plate and propagate with 
significant amplitudes underwater. The transversely 
propagating burst experienced frequency dependent 
modulation. This modulation could be due to the interference of 
two different Lamb waves [323]. To our knowledge, the 
existence of guided Lamb waves in the cell culture plates has 
not been reported before. 

It was also shown that the cells in a well can be indirectly 
stimulated with different waves, i.e., radiation force–based PRF 
movement and surface wave movement. Using continuous 
wave sonications the dynamic radiation force–based PRF 
motion can be eliminated, leaving only the surface wave 
component. Our data also highlights that the control wells must 
not be positioned on the same plate as the sonicated wells due to 
the “acoustic coupling” between the wells. 

Temperature measurements at the bottom of the cell well 
indicate that the combination of near field sonication, strong 
ultrasound reflections from liquid-air interface and ultrasound 
gel coupling is the most vulnerable to ultrasound induced 
heating. The acoustic power (120 mW), used in this study 
produced ISATA of approximately 32 mW/cm2 and resulted in a 
3°C temperature rise. This is a large enough temperature rise to 
potentially induce biologic effects on the cell culture. The 
acoustic power delivered to the target or the temperature rise in 
the tissue may depend on the thickness of the gel layer [31,262]. 
We believe that the large temperature rise difference between 
the acoustic coupling methods is due to the inferior heat transfer 
properties of surrounding air compared with circulating water. 

This study demonstrates that simple ultrasound in vitro 
setups are very susceptible to large variations in acoustic 
exposure.  
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7 Summary and 
Conclusions 

The following points summarize the main observations of this 
thesis related to the aims set in the Introduction. For future 
work, some conclusive remarks are given. 
 
• The increase in proteoglycan synthesis in bovine primary 

chondrocytes after ultrasound exposures implies that ultrasound, 
either independent of temperature elevation or co-operatively with 
hyperthermia, augments extracellular matrix production in 
chondrocyte monolayers. 

• Whole genome-wide microarray analysis of sonicated MG-63 
osteoblastic cells indicated altered responses specifically on cell 
membrane-related genes. Most likely, these changes do not 
originate from the thermal ultrasound effects. 

• In osteoblastic cells, both thermal and non-thermal activation of 
Wnt signaling after ultrasound exposure was observed. 
Ultrasound activation showed a synergistic effect with the 
chemical pathway activator. Activation of this route forms new 
insight into the physical and molecular basis behind the 
ultrasound stimulation. 

• Cell culture chamber walls having substantial sound absorption 
and poor heat conduction are locations for the highest heating. 
Standing waves further increase the heating. The type of acoustic 
coupling may have significant impact on temperature rise. 

• At the worst, temperature variation within the exposure chamber 
may result in uneven cell stimulation. Multiple point temperature 
measurements and/or thermal imaging may be required for 
adequate characterization of the in vitro setups. 
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• Many in vitro ultrasound setups are vulnerable to frequency-
dependent sound transmission, standing waves, and wave mode 
conversion. These complicate the calibration of the ultrasound 
wave and reduce the repeatability of the acoustic exposures. 

• Radiation force–based displacement on the cell plate is generated 
at the frequency of PRF. 

• Lamb waves are generated on the culture plates. These guided 
waves are potential cell-stimulating factors. Lamb waves and PRF-
induced radiation force vibrations can also couple to the other 
wells on the same plate.  

 
Focused ultrasound sources could outperform the planar 
sources used in this work and most other studies of this field. 
Geometrically focused transducers form a well-defined acoustic 
focal area. Thus, they allow a spatially localized, shorter 
exposure distance without strong non-linear harmonic build-up. 
To treat larger samples, the focal point could be moved 
mechanically or electrically. 

Glass-bottom cell vessels having low acoustic absorption but 
high reflectivity could be used instead of plastic ones. One 
should however, be aware that the high speed of sound in glass 
and thin structure increase the plate resonance frequencies and 
may cause large uncertainties if not properly accounted for. 
Culture chambers made of thin, flexible plastic membranes may 
allow an optimal implementation for exclusion of standing 
waves and minimization of thermal effects. With adherent 
samples, minimal interaction with sound and low response of 
membrane may reduce the radiation force effect. 
 
There is a rich body of published in vitro works that show the 
efficiency of therapeutic ultrasound in regenerative medicine 
and tissue engineering. Our in vitro observations should aid in 
efforts estimating the role of the various physical factors 
impacting the cells during these studies. Our results may also be 
helpful when this technique is further developed for tissue 
engineering.  
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Therapeutic ultrasound is 

a stimulating technique in 

regenerative medicine and tissue 

engineering of bone and cartilage. 

The ultrasound mechanism causing 

these effects is unclear. Ultrasound 

in vitro studies form the bases for 

the method. In this thesis, bone 

and cartilage cells sonications 

and detailed measurements of 

the exposure circumstances were 

done. The results and the reviewed 

literature highlight the variability 

and complexity of these exposures 

which hinder its optimal use.
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