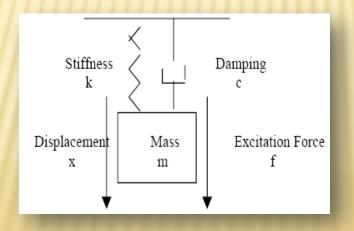

Acoustic Resonant Inspection (ARI)



- ARI is based on the analysis of the natural frequencies of a part. An impact causes the part to vibrate in certain characteristic frequencies.
- □ These frequencies (f_r) are whole-body properties of a given structure, which are determined by dimensions and material properties of the part.

Theory

- A simplified physical model of the resonance can be expressed with a mass and string as $f_r = \sqrt{k/m}$, where k is stiffness (material properties) and m is mass (dimensions, density).
- Any structure has an infinite number of resonances, each determined by a combination of material properties and dimensions.

- The presence of structural defects results in out-of-specification condition for material properties or dimensions, which causes:
 - shifts in these frequencies,
 - Changes in damping factors,
 - Nonlinear effects such as generation of new frequencies
- By monitoring the above changes and analyzing the multi-variable relations between the natural frequencies, various structural defects can be detected.

Description

- To Excite the structure and cause it to vibrate an impact hammer is used.
- The part vibrations can be measured by two microphones or two accelerometers.
 - Every part has a unique resonant signature and any deviation from the expected signature indicates the presence of a flaw.
 - A single measurement can detect defects at any location throughout the part.

Typical Applications

ARI offers rapid and inexpensive method of 100% inspection of parts.

- ARI is designed to detect defects such as:
 - Cracks
 - Cavity
 - Cold shuts
 - Low nodularity
 - Residual stress
 - Hardness deviations
 - Out-of-tolerance dimensions

Training the System – Reference parts

ARI is a relative test method, which requires a database of known parts.

- Typically 100 to 500 good parts from different production batches
- 10 to 30 defective parts from each type of flaw (optional)

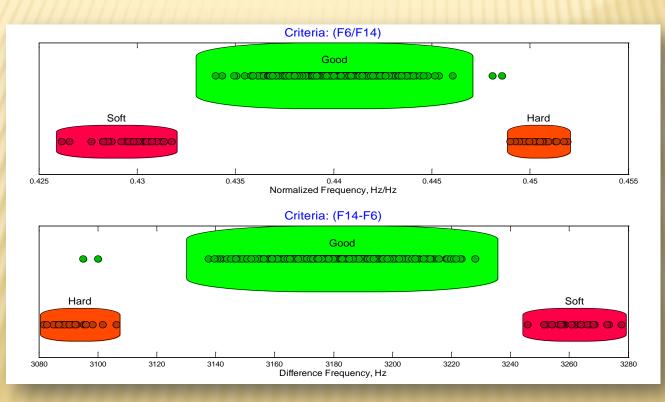
Training the System – Decision Module

- ARI generates a Decision Module based on advanced statistical methods and classification algorithms to sort the parts.
- Acceptance range of resonant frequencies
- Mutual relation between two frequencies
- Relationship between multiple frequencies
- Classification of Pass Fail groups
- Clustering of Good parts for process compensation
- Frequency split check for crack detection
- Damping factors of modes

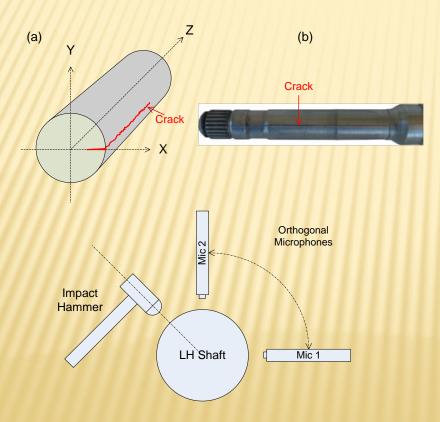
Analysis Steps	Check Statistical Criteria
Step 1: Calculate Peak Frequencies	Enable Decision Making
Step 2: Select Dominants	F1 Include F3 in Clustering
Step 3: Normalize to Dominants	F2 F3 Check F3 Range
Step 4: Select Mode Regions	F4 Ignore F3 if Missed
Step 5: Label Modal Frequencies	F6 Check F3 Range with respect to F
Step 6: Statistical Features	F7 6 7 9 13 14 16 17 20
Step 7: Show Statistical Results	F9 Check Subtraction (Fx-Fy)
	F10 F11 VInclude F3 in Classification
Clustering (Good-Good)	F12 F13 Include F3 in Frequency Prediction
Gaussian Mixture	F14 PCA Cumulative Variance Threshold (%) 00 8
Method K-Means	F15 F16 Predict Frequency F 18
Number of Clusters (L) 1 (R)	F17 F18 Acceptance Window (Hz) 70
PCA Threshold (%) 99.5	F19
Classification (Good-Bad)	Check F3 for Frequency Split
Classification Tree	F3 Search Range (Hz) ± Split Peak Ratio (%)
Neural Network	
PCA Threshold (%) 99 2	Outlier Percentile (%): 0 Dilate Percentile (%): 50
Network Size: L2= 10 L3= 5	Dilate Min-Max Range (%): 10

Training the System – Decision Module

- Good" parts have consistent spectral signatures, meaning that their resonant frequencies are the same among the reference parts; while the resonances of "Fail" parts are different.
 - A crack in a part causes certain resonances displaced to low frequencies or split up into two frequencies; whilst others remain the same.
 - With hardness testing, "all" resonances are changed due to hardness deviation in a part.

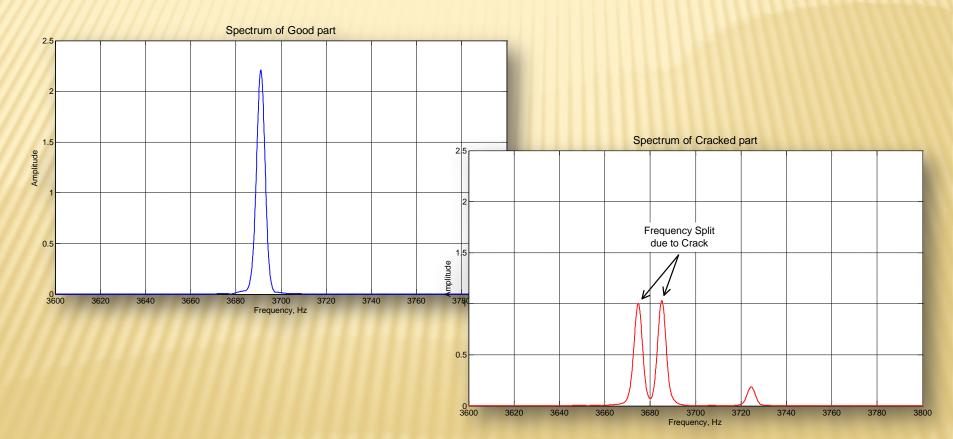

Industrial Applications (No.1)

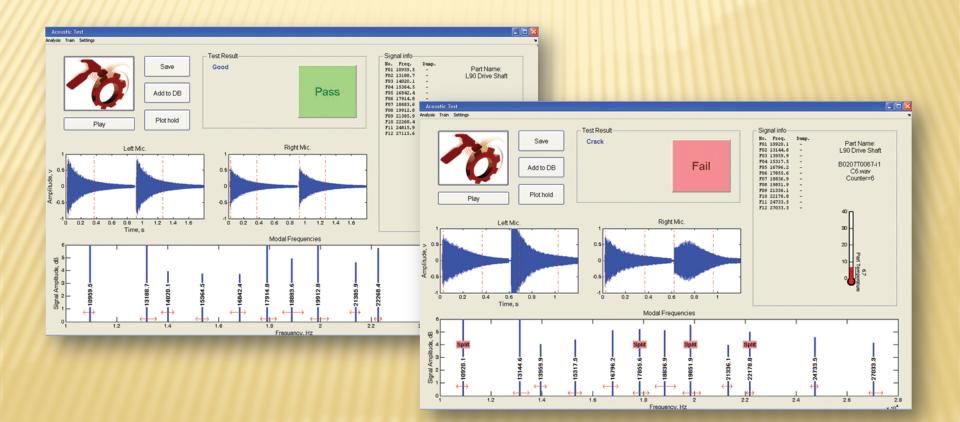
- Hardness evaluation in Pride (Kia Motors) Stabilizer bar
 - 40 natural frequencies are tested
 - A multi-variate statistical classifier is used to separate Good parts from Soft (<37HRC) and Hard (>41.5 HRC) parts


Industrial Applications (No.1)

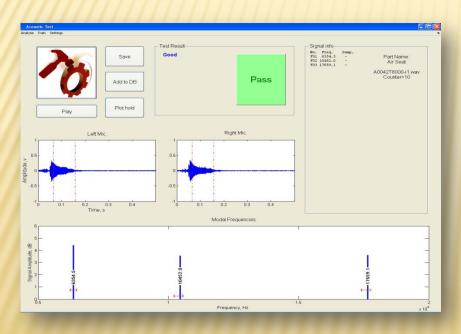
Distribution of a relative feature (F_x/F_y) or $(F_x - F_y)$ is one of the criteria to separate defective parts.

Industrial Applications (No.2)


Longitudinal crack detection in Renault L90 driveshaft


Industrial Applications (No.2)

A longitudinal crack causes non-linear effects such as frequency split


Industrial Applications (No.2)

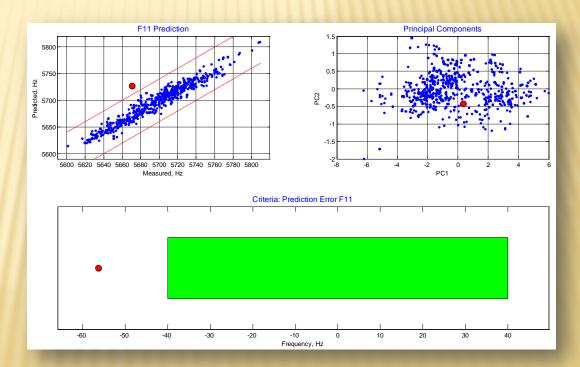
For L90 shaft we check frequency splits of 12 modes between 11kHz – 28kHz

Industrial Applications (No.3)

Crack detection in Air Seat and Exhaust Seat used in EF7 cylinder head

Industrial Applications (No.4)

- Pride (Kia Motors) knuckle arm test for hardness uniformity after heat treatment
- Accepted hardness range: 150 210 HB, but hardness deviation between different points of a part <5HB</p>



Industrial Applications (No.4)

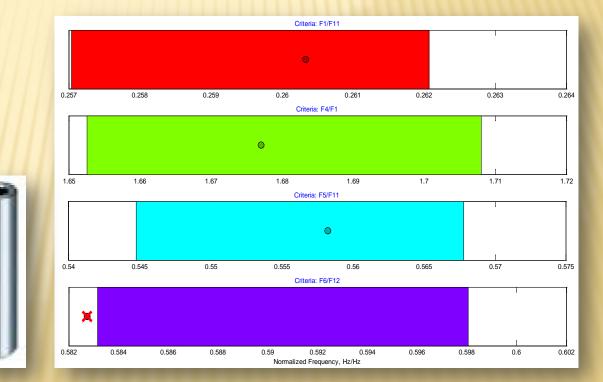
- The relationship between multiple frequencies using frequency prediction is a criterion to test hardness uniformity between different points of a part.
- If the part is homogenous in hardness, a frequency can be predicted by other natural frequencies:

$$\hat{F}_i = f(F_1, F_2, F_3, ...)$$

error = $\hat{F}_i - F_i$

If the prediction error is higher than a threshold, the part is rejected.

Industrial Applications (No.5)


Peugeot 206 knuckle arm test for hardness uniformity after heat treatment

Industrial Applications (No.6)

- Peugeot axle shaft test for Hardness uniformity and Case depth after induction hardening
- The ratio of two natural frequencies is a criterion to separate defective parts

$$R_{Min} \leq \frac{F_i}{F_i} \leq R_{Max}$$

Features

- High speed, accurate and repeatable measurements
- Easy to use and user friendly interface
- Classification of parts based on advanced data modeling and multivariate statistics methods
- Temperature compensation of resonant frequencies using infrared thermometer
- Automatic impact using dual electromechanical or pneumatic hammers with adjustable strike force
- Dust-proof and weather resistant enclosure
- Customized fixture design with pneumatic control for part loading
- Report generation, including statistical analysis