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Abstract: Ultrasonic peening treatment (UPT) as a method of severe plastic deformation was
used to treat cruciform welded joints of Q345 steel. The application of UPT achieves material
surface nanocrystallization of the peening zone, reduces stress concentration, and produces residual
compressive stresses at the welded toe. Micro-structure, hardness, stress relief, S-N curve, and the
fatigue fracture mechanism of cruciform welded joint of Q345 steel, both before and after UPT, were
analyzed in detail. The main results show that: stress concentration and residual tensile stress are
the main reasons to reduce fatigue strength of cruciform welded joints. The fatigue life of cruciform
welded joints is improved for surface hardening, compressive stress, and grain refinement by UPT.
Residual compressive stress caused by UPT is released with the increase of fatigue life. A very
significant fatigue strength improvement happens when UPT is replenished repeatedly after a certain
number of cycles.
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1. Introduction

Welding has been widely used in many aspects of industrial production as a main method of
connecting mechanical parts. Usually, a welded joint has a higher stress concentration and a larger
tensile residual stress at the weld toe, which will significantly reduce the fatigue life of the welded joint.
Therefore, fatigue failure is one of the most important failure cases for welded joints [1–3]. It is well
established that fatigue strength of welded joints can be enhanced by producing compressive residual
stress, reducing stress concentration, increasing hardness, and forming nanocrystalline structures.
Currently, the existing methods of improving fatigue performance consist of Tungsten inert gas (TIG)
dressing, common hammering, weld toe grinding, a spraying method, shot peening, and so on [4–8].
TIG dressing has always been a simple and effective method. Previous studies [9] have shown that
fatigue strength can increase by 37% after TIG dressing under constant amplitude loading. In contrast,
the effect of TIG dressing is not very good under variable-amplitude loading, because compressive
stress is easily relaxed when a high value stress occurs at a particular moment. Additionally, improper
operation also can cause some side effects for TIG dressing [10]. The common hammering method
has many disadvantages, such as low efficiency, large noise, great labor intensity, poor controllability,
and instable effect [11], and, as such, is not suited for standard-processing. The spraying method
can effectively reduce stress concentration and improve surface properties, but the bonding strength
between the layer and the matrix is weaker, and a fatigue crack can easily form at the bonding
position under the high stress level [12]. Weld toe grinding can effectively improve fatigue strength of
a welded joint [13,14], but static strength may decrease after grinding. Shot peening is one of the most
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widely used surface enhancing methods to improve fatigue strength [15–17]. Fatigue properties of
the parent metal treated by shot peening have been documented in detail by Bagherifard et al. and
Hassani-Gangaraj et al. [18,19]. Fatigue life is substantially improved after shot peening treatment,
but shot peening cannot effectively deal with the position of stress concentration on a cruciform
welded joint due to the uncontrollability of pill granules. As such, the improvement of fatigue life for
a cruciform welded joint still cannot depend entirely on shot peening. Furthermore, there are many
complicated fillet welds for a large welding structure; utilizing the shot peening treatment for these
welded joints is not realistic [20].

In view of the above analysis, UPT was used to treat cruciform welded joints of Q345 steel.
Stress concentration at the position of the weld toe can be significantly reduced [21–24]. A thin layer
of nanocrystals will be formed, and residual tensile stress can be changed into residual compressive
stress on the peening surface. These effects are useful to stop or prevent crack propagation.

In this study, the relevant characteristics surrounding the ability of UPT to improve fatigue
performance of cruciform welded joints of Q345 steel will be studied. The effect of residual compressive
stress caused by UPT on fatigue life will be discussed in a detailed analysis. Meanwhile, the roles
of nanocrystalline structures, surface hardening, and stress concentration in the process of fatigue
fracture will also be further discussed.

2. Material and Experimental Procedures

2.1. Joint Type and Experimental Material

The fatigue specimens were cruciform welded joints of Q345 steel (Angang Steel Company
Limited, Anshan, China), whose geometrical characteristics are shown in Figure 1. The main chemical
composition (wt %) of Q345 steel is: Cď 0.18, Mnď 1.70, Siď 0.50, Pď 0.030, Sď 0.025, and Alě 0.015.
The mechanical properties of Q345 steel are shown in Table 1. Q345 is a kind of low alloy steel, which
has good toughness and ductility. CO2 arc welding is the connecting method.
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Figure 1. The geometrical characteristics of the fatigue specimens.

Table 1. The mechanical properties of Q345 steel.

Material Yield Strength/MPa Ultimate Tensile Strength/MPa Elongation Rate/% HV

Q345 steel ě345 490–675 ě22 150
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The metallographic structure of Q345 steel, which contains a large amount of white ferrite and
a small amount of black pearlite, is shown in Figure 2. The metallographic structure was relatively
uniform and no defects exist.
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2.2. Surface Strengthening Treatment

HJ-III type ultrasonic peening equipment produced by Tianjin University, in China, was used
to treat the weld toe of the cruciform welded joints. After UPT, the larger stress concentration of the
weld toe was reduced, and the residual compressive stress formed at the weld toe. Meanwhile, the
high-frequency impacts refined the grains. Thus, with the decrease ingrain size, the material hardness
increased gradually. The detailed parameters of UPT are shown in Table 2. In order to ensure peening
effects, multiple treatments were implemented.

Table 2. The parameters of the ultrasonic peening treatment.

Current/A Frequency/KHz Amplitude/µm Time/min Impact Needle Shape Impact Position

3.5–4.0 19 ˘ 1 48 5 Circular Weld toe

2.3. Fatigue Testing Scheme

Fatigue tests of cruciform welded joints were performed. Under tension-tension constant
amplitude loading mode (sine wave loading), each welded joint was tested at five stress levels
with stress ratio R = 0.1 at room temperature in air environment. Fatigue tests were conducted on
a 200 kN high frequency fatigue testing machine (CIMACH, Changchun, China) with static load error
within a full measuring range between ˘0.2% and dynamic load error between ˘2%. The frequency
used was the resonance frequency determined by the fatigue specimen and testing machine. The value
of the frequency in these fatigue tests is about 100–120 Hz. The detailed fatigue testing scheme was
as follows:

(1) Fatigue tests of two kinds of welded joints (as-welded joint and UPT-welded joint) were carried
out. The effect of UPT can be observed through the S-N curves.

(2) UPT-welded joints were given an extra supplement of ultrasonic peening during the process
of fatigue tests every 50,000, 100,000, and 150,000 cycles, respectively. The effect of residual
compression stress release on fatigue life can be studied by this way.
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3. Results and Discussion

3.1. Surface Strengthening Mechanism of UPT

The OLS3000 laser confocal microscope (ZEISS, Oberkochen, Germany) was adopted to observe
microstructures and the deformation layer after UPT (see Figure 3). After UPT the specimens presented
three areas: the Plastic Deformation Zone (PDZ), the Transition Zone (TZ), and the Matrix Zone (MZ).
Among them, PDZ mainly contained fine grains with different orientations. The average size of fine
grains had reached a nanometer level. PDZ is the area affected directly by the high speed ultrasonic
peening. Microstructure characteristics of the TZ are between the PDZ and the MZ; the grain size of
the TZ was bigger than that of the PDZ. With the increase indepth, the grain size of the TZ will be the
same with that of the MZ.
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deformation zone; TZ: Transition zone; MZ: Matrix zone).

It can be observed from Figure 3 that the thickness of the PDZ is about 40 µm. Because the plastic
deformation layer is formed and the grain size is refined to the nanoscale, the strength and hardness of
the material surface will be significantly improved after UPT. Meanwhile, compression stress caused by
static loading pressure during the process of UPT is reserved through plastic deformation in a certain
depth from the material surface. Residual compressive stress is one of the most important factors of
improving fatigue performance.

3.2. Hardness Analysis

Models for MH-3 Vickers hardness tester (Shanghai Hengqi Precision Machinery Plant, Shanghai,
China) were adopted to measure the hardness values. The hardness values after UPT were measured
along the direction of thickness (from surface to interior). The loading was 300 g and lasting time was
10 s. The variation trend of hardness values are shown in Figure 4. Hardness values on the material
surface after UPT were larger. Hardness value decreases as the depth increases. Eventually, the
hardness values tended to reach a stable level. The increase of hardness values was caused by both
grain refinement and work-hardening. Hardness value of the Q345 steel before UPT was about 150 HV.
After UPT, the largest hardness value was 246 HV, which increased by 64% comparing with the value
before UPT.



Materials 2016, 9, 471 5 of 9
Materials 2016, 9, 471 5 of 10 

 
Figure 4. The variation trend of hardness values after UPT from surface to interior. 

3.3. Fatigue Life Analysis 

In this study, nominal stress (the load divided bythe flat part cross-section of the specimen) was 
adopted. Nominal stress level and fatigue life together determine the fatigue performance of a 
specimen. The relationship between nominal stress range (Δσ) and fatigue life (N) is represented in 
Equation (1). The curve based on the Equation (1) is the traditional S-N curve. Where, σmax and σmin is 
the maximum nominal stress and minimum nominal stress in a cycle, respectively. 

m
CN 


 (1) 

max min     (2) 

According to the Equations (1) and (2), fatigue data of UPT-welded joints and as-welded joints 
are presented in Figure 5. 

In Figure 5, the fatigue strength of UPT-welded joints has been improved with respect to that of 
the not-peened samples (as-welded joints). Notably, with the decrease instress level, the effect of UPT 
for improving the fatigue life of welded joints is better. When the nominal stress range (delta sigma) 
was 240 MPa, the fatigue lives of the as-welded joint and UPT-welded joint were 223,058 cycles and 
1,404,532, respectively. The fatigue life of the UPT-joint was 6.3 times that of the as-welded joint. 
However, the fatigue life of the UPT-welded joint was close to that of the as-welded joint under a 
high stress level. For example, when delta sigma was 300 MPa, the fatigue lives of the as-welded joint 
and UPT-welded joint were essentially the same. The reason for the above phenomenon is that 
residual compressive stress can be preserved under alow stress level, but residual compressive stress 
will be released under ahigh stress level. Therefore, the effect of UPT is better for the improvement 
of fatigue life under alow stress level. 

Figure 4. The variation trend of hardness values after UPT from surface to interior.

3.3. Fatigue Life Analysis

In this study, nominal stress (the load divided bythe flat part cross-section of the specimen)
was adopted. Nominal stress level and fatigue life together determine the fatigue performance of
a specimen. The relationship between nominal stress range (∆σ) and fatigue life (N) is represented in
Equation (1). The curve based on the Equation (1) is the traditional S-N curve. Where, σmax and σmin
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In Figure 5, the fatigue strength of UPT-welded joints has been improved with respect to that
of the not-peened samples (as-welded joints). Notably, with the decrease instress level, the effect of
UPT for improving the fatigue life of welded joints is better. When the nominal stress range (delta
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sigma) was 240 MPa, the fatigue lives of the as-welded joint and UPT-welded joint were 223,058 cycles
and 1,404,532, respectively. The fatigue life of the UPT-joint was 6.3 times that of the as-welded joint.
However, the fatigue life of the UPT-welded joint was close to that of the as-welded joint under a high
stress level. For example, when delta sigma was 300 MPa, the fatigue lives of the as-welded joint and
UPT-welded joint were essentially the same. The reason for the above phenomenon is that residual
compressive stress can be preserved under alow stress level, but residual compressive stress will be
released under ahigh stress level. Therefore, the effect of UPT is better for the improvement of fatigue
life under alow stress level.

3.4. The Effect of Stress Release on Fatigue Life

Residual compressive stress caused by UPT will be relaxed with an increase of fatigue life.
Especially for the welded structure parts during serving, the release of residual compressive stress
caused by UPT will make the effect of ultrasonic peening disappear. Thus, the welded structure parts
during serving will be very dangerous. So, if UPT is continuously reapplied every few cycles, the
compressive stress will have been preserved, and thus the fatigue life of the welded joints will also be
further prolonged. Given this, five samples (A, B, C, D, and E) were prepared and subjected to the
fatigue tests. Sample A was a UPT-welded joint under the nominal stress range of 270 MPa; Sample B
was a UPT-welded joint that had ultrasonic peening reapplied every 100,000 cycles under the nominal
stress range of 270 MPa; Sample C was a UPT-welded joint that had ultrasonic peening reapplied
every 150,000 cycles under the nominal stress range of 270 MPa; Sample D was a UPT-welded joint
under the nominal stress range of 255 MPa; Sample E was a UPT-welded joint that had ultrasonic
peening reapplied every 100,000 cycles under the nominal stress range of 255 MPa; Sample F was
a UPT-welded joint that had peening reapplied every 150,000 cycles under the nominal stress range of
255 MPa. Fatigue data of the six samples are shown in Table 3 and Figure 6.
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Table 3. Fatigue data of six samples.

Samples Nominal Stress Range/MPa Fatigue Life/Cycles Peening Interval/Cycles

A 270 568,516 No supplement
B 270 1,074,959 100,000
C 270 627,278 150,000
D 255 878,512 No supplement
E 255 1,104,878 100,000
F 255 1,125,487 150,000
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From Table 3 and Figure 6 we can obviously ascertain that UPT reapplications are beneficial to the
improvement of fatigue life. Under the nominal stress range of 270 MPa (high stress level), the effect of
UPT reapplications every 100,000 cycles (Sample B) was better than that of UPT reapplications every
150,000 cycles (Sample C). The fatigue lives of Sample B and Sample C were 1.9 times and 1.1 times that
of Sample A, respectively. The above mentioned results indicate that residual compressive stress is not
completely relaxed when fatigue life reaches 100,000 cycles. At this point, the UPT reapplicationswill
result inthe residual compressive stress being maintained at the position of the weld toe, thereby
improving fatigue life significantly. However, residual compressive stress has been observed to be
completely relaxed when the fatigue life reaches 150,000 cycles, and the tensile stress is potentially
still a factor at this point, so the improvement of the fatigue life is not obvious. For the welded
structure parts during serving, the timely reapplication of UPT can effectively avoid the occurrence of
safety accidents.

Under the nominal stress range of 255 MPa (low stress level), the effect of UPT reapplications every
100,000 cycles (Sample E) was basically the same with that of UPT reapplications every 150,000 cycles
(Sample F). The fatigue lives of Sample E and Sample F were 1.26 times and 1.28 times that of Sample D,
respectively. These results indicate that the release rate of the residual compressive stress is slower
under the low stress level. UPT reapplications under the low stress level were not as important as they
were under the high stress level.

3.5. Fatigue Fracture of Welded Joint before and after UPT

In this study, fatigue failure means that a crack can be observed during fatigue tests. For as-welded
joints, stress concentration and tensile stress exist at the weld toe, as such, the fatigue crack occurs at
the weld toe. After UPT, the sharp weld toe is changed into a smooth weld toe, so stress concentration
at the position of the weld toe can be significantly reduced (see Figure 7). The fatigue strength of
UPT-welded joints is further improved for the reduction of stress concentration.
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Figure 8 shows the fracture positions of an as-welded joint and UPT-welded joint.
Comparing Figure 8a with Figure 8b, the positions of the fatigue fractures are at the weld toe for
both the as-welded joint and UPT-welded joint. However, the fatigue crack initiation of the UPT-welded
joint requires a long time for the smooth shape of the weld toe, and the fatigue life of the UPT-welded
joint also is improved. For the as-welded joint, the process of the fatigue crack initiation almost does
not exist for the sharp shape of the weld toe, and fatigue life of the as-welded joint is directly decided
by the process of the crack propagation, so the fatigue life of the as-welded joint is lower. In addition,
the as-welded joint has fractured completely for the fast crack propagation related testing conditions
(see Figure 8a). However, the UPT-welded joint only produced a short crack under the condition of
residual compressive stress and smooth weld toe.

For the welded joints with UPT reapplications, the weld toe always maintained during the
residual compressive stress, therefore fatigue fracturing has not occurred at the weld toe, and instead
another weak point of the sample has now become the position of crack initiation (see Figure 9).
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Although fracturing may happen in other weak points, the fatigue life of the welded joints after UPT
reapplicationsis still obviously improved. Figure 9 shows that the position of fatigue crack initiation has
changed from the weld toe to the circular arc transition position of a sample after UPT reapplications.
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4. Conclusions

Ultrasonic peening treatment was used to improve the fatigue performance of cruciform welded
joints of Q345 steel. By analyzing micro-structure, hardness, stress relief, S-N curve, and fatigue
fracture, we can draw the following conclusions:

(1) Ultrasonic peening treatment can achieve nanocrystallization on the surface of the peening
sample, reduce stress concentration, and form residual compressive stresses at the weld toe.

(2) Stress concentration and residual tensile stress are the main reasons to reduce fatigue strength of
cruciform welded joints.

(3) Residual compressive stress caused by ultrasonic peening treatment will be released with the
increase of fatigue life. A very significant fatigue strength improvement occurs when the
ultrasonic peening treatment is reapplied repeatedly after a certain number of cycles.
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